Spelling suggestions: "subject:"info:entrepo/classification/ddc/624"" "subject:"info:restrepo/classification/ddc/624""
221 |
Flow-Induced Particle Migration in Concrete under High Shear RatesFataei, Shirin 18 August 2022 (has links)
The correlation between concrete rheological parameters and its pumping behavior under consideration of the so-called lubricating layer has been investigated for decades. In this thesis, flow-induced particle migration (FIPM) was studied in-depth, as the main underlying mechanism for the formation of the lubricating layer.
Conventionally vibrated and self-compacting concretes were chosen as the target mixtures. Furthermore, cementitious model concretes, containing colored glass beads, were proposed to obtain further insights into the FIPM and its impact on pumping. The mixtures were differentiating with regard to particle volume fractions, mortars composition, maximum particle size and particle size distributions. In the experiments, various established methods were used to characterize the rheological properties and the pumping behavior of the concretes. New methodologies for estimating the thickness of the lubricating layer and the particle distribution in pumped cross-sections were proposed as well.
The rheological properties and pumping behavior of real and model concretes were in agreement with the state-of-the-art literature. Based on the radial particle distributions, it was illustrated that the particle migration intensifies by increasing the particle size and decreasing the total volume fraction of solid particles. Furthermore, in highly-concentrated poly-dispersed model concretes, the particle concentration curves consist of a sudden jump close to the pipe wall and a relatively uniform distribution in the inner zone of the pipe. In these cases, the influence of FIPM on overall flow behavior cannot be neglected. Moreover, it was shown that the lubricating layer thickness is not constant for all concrete mixtures. For poly-dispersed suspensions, the shear-induced particle migration (SIPM) has a stronger impact than the wall for forming the lubricating layer. Finally, it was concluded that a solid-liquid threshold of 1 to 2 mm is a reliable choice when investigating concrete pipe flow. The faster the concrete is pumped or the lower the yield stress of the constitutive mortar is, the smaller is the solid-liquid threshold.
Based on the experimental findings, a first-order physical correlation between pumping parameters (pressure and discharge rate), particle properties (volume fraction and packing properties) and lubricating layer properties (thickness and viscosity) was proposed. Accordingly, for a simple flow topology with a shearing lubricating layer and an extruding yield stress concrete, the lubricating layer thickness was computed from the competition between shear-induced fluxes of particles. In agreement with the driving equations of SIPM, it was assumed that the first flux correlates with the internal stress gradient in the plug concrete whereas the counteracting particle flux correlates with the shear rate in the lubricating layer. The model was validated for two flow types, pipe flow in the Sliper and Couette flow in a co-axial tribometer. The proposed model can capture the observed main features and their evolutions despite the absence of any fitting parameters.
|
222 |
Diskrete-Elemente-Simulationen zum mehraxialen Schädigungsverhalten von BetonReischl, Dirk Sören 17 August 2022 (has links)
Die Methode der Diskreten Elemente ist eine neue, alte Methode, beruhend auf den Newtonschen Axiomen, praktikabel geworden durch die rasante Entwicklung der Rechentechnik in den vergangenen fünfzig Jahren. Es handelt sich um einfach zu beschreibende, vielfältig einsetzbare, aber rechenintensive Methode. Die Methode der Diskreten Elemente ist jene Methode, von der viele Menschen – nicht nur Laien -- glauben, dass es die Methode der Finiten Elemente sei.
Die Methode ermöglicht es, mit vergleichsweise geringem Programmieraufwand spektakuläre Ergebnisse zu erzielen. Die Notwendigkeit zur Lösung schwach besetzter großer linearer Gleichungssysteme entfällt ebenso, wie eine komplizierte Netzgenerierung, die Assemblierung von Systemmatrizen und die damit verbundenen, aufwändigen Optimierungsstrategien.
Die Methode der Diskreten Elemente gehorcht implizit streng jenen – stets gültigen – Energieprinzipien, auf die sich andere Methoden wie die Methode der Finiten Elemente bei Herleitungen explizit berufen, während sie tatsächlich lediglich mit Näherungen für (sehr) kleine Verformungen arbeiten.
Bei entsprechender Auslegung lassen sich alle an der Simulation beteiligten Elemente als materielle Bestandteile oder beruhend auf der Wechselwirkung materieller Bestandteile auffassen. Kontaktelemente oder gar geeignet platzierte Risselemente werden nicht benötigt. Risse äußern sich durch die Abwesenheit von Materie. Das Phänomen der Überadditivität ist in Partikelsimulationen von vornherein angelegt. Partikelmethoden eignen sich daher hervorragend zum modellhaften Studium komplexer Systeme.
Die Parameteridentifikation und Parameteranpassung von Diskrete-Elemente-Modellen gestaltet sich schwierig, sobald die Gültigkeit des Superpositionsprinzips nicht mehr gegeben ist. Dies ist jedoch kein Mangel der Methode, sondern Folge von Interaktion und Überadditivität.
Die Methode eignet sich hervorragend zur Generierung virtueller Probekörper und zum Preprocessing im Zusammenwirken mit anderen Simulationsmethoden. Visualisierungen der mit Partikelmethoden erhaltenen Ergebnisse sind von hohem anschaulichem und didaktischem Wert. Die Methode ist sehr flexibel, so dass die Simulationsergebnisse bei entsprechender Parametergestaltung keiner künstlichen Überhöhung bedürfen.
Die Methode der Diskreten Elemente ist eine entdeckende Methode. Sie besitzt – wie jede andere Methode – Methodencharakter, die auf ihrer Grundlage entwickelten Modelle – wie alle Modelle – Modellcharakter.
|
223 |
Economic model of mine closure and its potential for economic transformationToni 07 April 2015 (has links)
In Indonesia, the various mining commodities and the amount of resources and reserves are promising, as evidence there are numerous large-scale mining companies and small-scale mines in operation. In 2014 there were 41 companies that held the CoW (mineral contract of work) and 13 companies active in production; and 76 CCoW (coal contract of work) holders, and 57 companies active in production. As well as this, there are more than a thousand small-scale mining companies active for mining commodities. However, mining commodities provide a resource that is not renewable. This will potentially lead to prolonged problems when mining companies do not adhere to good mining practices, particularly in the closing stages of the mine.
Mine closure is the final stage in the process of mining activity. In certain circumstances, closure activities can take a long time and of course can have huge costs. In fact, at this stage, the company is no longer making profit, only incurring costs for the project closure. To prevent problems that may arise after the mine is closed, such as abandoned post-mining land, and the bankruptcy of the company at the end of mining operations, etc., then through specific rules, ie rules of the Minister of Energy and Mineral Resources No. 18 of 2008, the mining company in Indonesia must provide a certain amount of money as a financial guarantee to finance the planned closure project; it must be approved by the government before entering this phase.
However, problems are encountered in practice. The government may become overloaded because they have to quickly make a decision on the closure plan submitted by the company. So a tool is needed that can be used to assess the feasibility as soon as the mine closure plan is proposed by a company, these tools can provide an overview and a variety of options for decision making. In this dissertation methodology was developed to create a systems dynamic model of mine closure.
The model developed can be applied to a variety of mining methods and for various mining commodities. The model can be used to determine the closure costs, to choose the closure project-financing scenario, and up to micro and macro economic analysis of mining activities in the region.
In the case studies conducted in this dissertation, the best scenario of the mine closure planning is to include the everlasting fund in the form of time deposits, and convert the post-mining land for agriculture. The amount of deposit money is about USD 358,986,500 should be spare at the end of mine production, and the total of mine closure cost to be approximately USD 440,757,384.
Agriculture, the economic sector as a substitute for the mining sector, the added value to the GRDP (Gross Regional Domestic Product) is about 0.25 % / a for the province, and 1.68 % for the regency, but the contribution of the mining sector to GRDP was 30% / a at province scale, and 90% / a at regency scale. So that the substitution value is less significant to GRDP growth. However, this scenario is the best scenario among others, due to consideration is the certainty of ecological and economic sustainability. it is the best goal of corporate social responsibility to the environment in the post- mining land.
|
224 |
Verfahren der Schallimmissionsprognose bei tieffrequenten GeräuschenFritzsche, Christoph 26 October 2021 (has links)
In der Veröffentlichung wird ein Verfahren vorgestellt für die Schallimmissionsprognose bei tieffrequenten Geräuschen. Das Verfahren beruht auf Untersuchungsergebnissen der Gesellschaft für Akustikforschung Dresden mbH – veröffentlicht in der LfULG-Schriftenreihe 9/2021 “Unterschungen zur Schallimmisionsprognose bei tieffrequenten Geräuschen” – sowie auf einer an DIN ISO 9613-2 angelehnten Schallausbreitungsrechnung.
Die Veröffentlichung richtet sich an Ingenieure, Planer und Immissionsschutzbehörden.
Redaktionsschluss: 24.03.2021
|
225 |
Implementierung und Validierung eines Algorithmus zur thermischen Simulation von transparenten Bauteilen für die energetische Ertüchtigung von Fenstern im BestandConrad, Christian 21 July 2021 (has links)
Der Klimaschutz ist eine Herausforderung und eine Verantwortung insbesondere gegenüber den nachfolgenden Generationen. Ein Baustein zum Klimaschutz ist die erhebliche Senkung des Energieverbrauches der bestehenden Gebäude. Bei der Sanierung von älteren oder gar zu Denkmalen erklärten Gebäuden stellt die Erhaltung der Originalsubstanz und des Erscheinungsbildes erhöhte Anforderungen an alle am Bau Beteiligten. Für eine energetische Ertüchtigung von historischen Fenstern, welche auch zukünftigen Anforderungen an den Klimaschutz genügen, zeigt diese Arbeit, dass eine detaillierte Planung und eine bauphysikalische Betrachtung notwendig sind.
Diese Arbeit leistet einen Beitrag, damit zukünftig das thermische Verhalten der einzelnen Bestandteile (Verglasung, Randverbund, Rahmen) des energetisch ertüchtigten Fensters realitätsnah simuliert und bewertet werden kann.
Ausgehend von einer vorbildhaften energetischen Sanierung eines Baudenkmals, welche auch zukünftige Anforderungen an den Klimaschutz genügt, wurden die Erfahrungen der Herstellung der Hochleistungsfenster des Modellgebäudes über die Beobachtungen in einem Zeitraum von über 15 Jahren dargelegt.
Bei der Literaturrecherche zum Stand der Wissenschaft und Technik zum Thema Berechnung und Simulation von transparenten Bauteilen wurde besonders auf die freie Konvektion im geschlossenen Scheibenzwischenraum eingegangen. Darauf beruhend wurden eine Parameterstudie und eine Bewertung der Konvektionsmodelle vorgenommen.
Das am Institut für Bauklimatik entwickelte numerische Simulationsprogramm [DELPHIN] beruht auf der Finite-Volumen-Methode für opake Bauteile und berücksichtigt den gekoppelten Wärme-, Feuchte-, Luft- und Salztransport für 1D-, 2D- und 3D- Probleme.
Dieses Programm wurde parallel zu dieser Arbeit durch das DELPHIN-Entwicklerteam auf der Grundlage der Validierungen mittels Messungen an den Fenstern des Modellgebäudes um die freie Konvektion im geschlossenen Hohlraum zu einem Programm zur Berechnung von transparenten Bauteilen weiterentwickelt. Zusätzlich können damit unter Berücksichtigung der Feuchtespeicherung hygrothermische Schadensprognosen in der Ingenieurpraxis vorgenommen werden. Im Vergleich zur CFD-Simulation wird nur ein Bruchteil der Rechenleistung und Rechenzeit benötigt.
Der Ansatz, mit den Messungen der Oberflächentemperatur und der Globalstrahlung senkrecht zur Fassadenebene alle wesentlichen Parameter zu erfassen und durch Nachsimulation von Scheibenoberflächentemperaturen im Kastenzwischenraum das Simulationsmodell und das Programm zu validieren, hat sich bewährt. Durch die Validierung unter Realbedingungen steigt die Akzeptanz dieser Simulation vor allem in der Praxis.
Das entwickelte Simulationsmodell stellt ein Werkzeug für die wissenschaftlich gestützte Weiterentwicklung moderner Fenster für die Industrie dar.
Zukünftig soll es zur Optimierung von anderen transparenten Bauteilen wie z. B. der thermischen Solarkollektoren sowie der Kombination aus thermischen Solarkollektoren und PV-Kollektoren beitragen. Eine weitere Zielgruppe dieser Arbeit sind Fachplaner und Fachbetriebe, welche sich auf die energetische Sanierung von Bestandsfenstern spezialisiert haben.
Die Simulationen der Kastenfenster haben gezeigt, dass bei der Bauteil- und Gebäudesimulation die Berücksichtigung der Absorption der kurzwelligen Strahlung und die daraufhin veränderten freien Konvektionen und der langwellige Strahlungsaustausch in den geschlossenen Hohlräumen nicht vernachlässigt werden können. Der Fehler bei dem Monatsbilanzverfahren zur Berechnung des Heizenergiebedarfes ist bei
2-Scheibenverglasungen noch vertretbar. Bei hochenergieeffizienten Mehrscheibenverglasungen sollte das normative statische Berechnungsverfahren zur
U-Wertermittlung von transparenten Bauteilen Verglasungen vorzugsweise durch eine thermische Simulation ersetzt werden. Hierbei sind der Klimastandort und die Ausrichtung für die Absorption der kurzwelligen Strahlung zu berücksichtigen. Eine Vereinfachung für ein Monatsbilanzverfahren für die jeweiligen Klimastandorte der Testreferenzjahre (TRY) [DWD] ist vorstellbar.
Bei der Bauteil- und Gebäudesimulation unter Verwendung von Stundenwerten und noch kleineren Zeitschritten sowie in der Hitzeperiode muss diese Modellerweiterung implementiert werden. Durch die realitätsnahe Simulation der Scheibenoberflächentemperaturen auf der Raumseite kann die Empfindungstemperatur berechnet und nachfolgend eine Behaglichkeitsbewertung durchgeführt werden.
Die Untersuchungsergebnisse beim Modellgebäude und der Simulation fließen in Vorschläge zur energetischen Ertüchtigung von Bestandsfenstern mittels schmaler Wärmeschutzverglasung mit reduziertem Emissionsgrad ein. Auf der Grundlage dieses Modells kann das Optimum des Scheibenzwischenraumes der einzelnen Edelgase in Abhängigkeit der Neigung ermittelt werden.
Das Modell gibt die Möglichkeit zur Bewertung und nachfolgend zur Minimierung von Schadprozessen, welche die Dauerhaftigkeit von transparenten Bauteilen beeinträchtigen. Für die Gebäudesimulation ist die Simulation der Wärmeströme der Verglasung und eine Betrachtung der Strahlungstransmission zu empfehlen. Die separate Simulation von U-Werten ist nicht zu bevorzugen.:1. Motivation, Ausgangssituation und Ziele 9
1.1. Motivation 9
1.2. Ziele, Thesen, Methodik und Relevanz des Dissertationsthemas 11
1.3. Strukturierung der Arbeit 16
2. Modellgebäude Handwerk 15 in Görlitz 17
2.1. Energetisches Gesamtkonzept 18
2.1.1. Dämmmaßnahmen 19
2.1.2. Erneuerung Anlagentechnik 20
2.2. Geschichte und Beurteilung des Denkmalwertes des Modellobjektes 24
2.3. Besondere Anforderungen an die Fenster am Beispiel des Gebäudes Handwerks 15 32
2.3.1. Brandschutzanforderungen 32
2.3.2. Schallschutzanforderungen 33
2.3.3. Belichtung 33
2.3.4. Architektonische Anforderungen-Beibehaltung des historischen Erscheinungsbildes 34
2.4. Energetische Ertüchtigung der Fenster des Modellgebäudes 37
2.4.1. Ausgangssituation 37
2.4.2. Verwendete Verglasung und Low-e-Beschichtung 39
2.4.3. Holz-Kastenfenster mit 2-Scheiben-Wärmeschutzverglasung aus Solarglas 41
2.4.4. Holz-Einfachfenster mit 3-Scheiben-Wärmeschutzverglasung aus Solarglas 44
2.5. Messungen und Beobachtungen am Modellgebäude 46
2.5.1. Messkonzept und Dokumentation des Monitorings und Messerfassungssystems 47
2.5.2. Messaufbau zur Erfassung des Innen- und Außenklimas 48
2.5.3. Bauteilmessstrecke Kastenfenster, 2. OG Nord 50
2.5.4. Bauteilmessstrecke Kastenfenster, 1. DG Süd 54
2.5.5. Bauteilmessstrecke Dachliegefenster, Nord, 2. DG 57
2.5.6. Beschreibung von bauphysikalischen Vorgängen bei den Verglasungen 63
2.5.7. Beschreibung von physikalischen Schadprozessen bei Fenstern 65
2.5.8. Zusammenfassung und Fazit aus den Messungen und den Beobachtungen 70
3. Stand der Wissenschaft und Technik 71
3.1. Aktuelle europäische Normung 72
3.2. Analytisches Modell für die Konvektion innerhalb des Scheibenzwischenraumes 78
3.3. Modell nach ISO 15 099 88
3.4. Modell nach Hollands, Unny, Raithby und Konicek u. a. 90
3.5. Modellzusammenstellung nach Klan und Thess 93
3.6. CFD-Simulationen von Mehrscheibenverglasungen 96
3.6.1. CFD-Simulationen im Vergleich zur DIN EN 673 96
3.6.2. CFD-Simulationen in Kombination mit Messungen im Versuchsstand 102
3.7. Übersicht über die Umsetzung der Verglasungsmodelle in den Computerprogrammen 104
3.7.1. Programm glaCE 3.03 von Glas-Trösch 105
3.7.2. Programm Calumen II 1.3.3/ CalumenLive von SAINT-GOBAIN GLASS 105
3.7.3. Programmpaket Optics, Windows und Therm mit Übergabe in Energy Plus 105
3.7.4. Einzonensimulationsprogramm Therakles 3.0 vom Institut für Bauklimatik 110
3.7.5. Programme der Energieeinsparverordnung 111
3.7.6. Programmpaket PHPP 8 111
3.7.7. Übersicht über die Software zur Berechnung von Verglasungskennwerten 112
3.8. Übersicht über die thermische Beanspruchung von Verglasungen 113
4. Vergleich und Bewertung der Konvektionsmodelle 117
4.1. Analytische Konvektionsmodelle 117
4.2. CFD–Simulation mit EasyCFD 124
4.3. Zusammenfassung und Bewertung der Konvektionsmodelle 125
5. Herleitung und Anwendung des Simulationsmodells 127
5.1. Benennung und Beschreibung der Wärmetransportmechanismen 127
5.2. Algorithmus zur thermischen Simulation von transparenten Bauteilen 140
5.3. Auswertung der Messung und der Simulation bei Kastenfenstern 148
5.4. Validierte thermische Simulation der Kastenfenster 156
5.5. Auswertung der Messung bei dem Dachliegefenster 160
6. Energetische Ertüchtigung von Bestandsfenstern 163
6.1. Situation bei Bestandsfenstern 164
6.2. Beispiele für die energetische Fenstersanierung 166
6.2.1. Bestandskastenfenster 167
6.2.2. Kastenfenster mit K-Glass™ 171
6.2.3. Kastenfenster mit Wärmeschutzverglasung und K-Glass im Innenflügelpaar 174
6.2.4. Kastenfenster mit Wärmeschutzverglasung und K-Glass im Außenflügelpaar 178
6.2.5. Energetische Ertüchtigung durch zusätzliche Fensterebene 182
6.3. Ergebnisse der umgesetzten energetischen Ertüchtigung von Bestandsfenstern 186
7. Zusammenfassung und Ausblick 187
Literaturverzeichnis 189
Anhang 197
Anhang I. Begriffe und Kennzahlen der Strömungsmechanik 197
Anhang II. Eigenschaften von Gasen nach DIN EN 673 199
Anhang III. Berechnung des optimalen Scheibenabstandes 202
Anhang IV. Simulation des optimalen Scheibenabstandes 205
Anhang V. Hinweise zur statistischen Auswertung 208 / Climate protection is a challenge and a responsibility, especially towards future generations. One component of climate protection is the considerable reduction of the energy consumption of existing buildings. When renovating older buildings or even buildings that have been declared monuments, the preservation of the original substance and appearance places increased demands on all those involved in the construction. For an energetic retrofitting of historic windows, which also meet future requirements for climate protection, this work shows that a detailed planning and a structural-physical consideration are necessary.
This work makes a contribution so that in the future the thermal behavior of the individual components (glazing, edge seal, frame) of the energetically upgraded window can be realistically simulated and evaluated.
Based on an exemplary energetic refurbishment of an architectural monument, which also meets future climate protection requirements, the experiences of the production of the high-performance windows of the model building were presented via the observations over a period of more than 15 years.
During the literature research on the state of the art in science and technology on the subject of calculation and simulation of transparent building components, special attention was paid to free convection in the closed space between the panes. Based on this, a parameter study and an evaluation of convection models were carried out.
The numerical simulation program [DELPHIN] developed at the Institute of Building Climatology is based on the finite volume method for opaque building components and considers the coupled heat, moisture, air and salt transport for 1D, 2D and 3D problems.
This program was further developed in parallel to this work by the DELPHIN development team on the basis of validations by means of measurements at the windows of the model building around the free convection in the closed cavity to a program for the calculation of transparent building components. In addition, hygrothermal damage predictions can be made in engineering practice with this program, taking moisture storage into account. Compared to CFD simulation, only a fraction of the computing power and computing time is required.
The approach to capture all essential parameters with measurements of surface temperature and global radiation perpendicular to the facade plane and to validate the simulation model and the program by post-simulation of pane surface temperatures in the inter-box space has proven to be successful. The validation under real conditions increases the acceptance of this simulation, especially in practice.
The developed simulation model represents a tool for the scientifically supported further development of modern windows for the industry.
In the future, it should contribute to the optimization of other transparent components such as thermal solar collectors as well as the combination of thermal solar collectors and PV collectors. Another target group of this work are professional planners and specialized companies, which have specialized in the energetic renovation of existing windows.
The simulations of the box-type windows have shown that in the component and building simulation, the consideration of the absorption of short-wave radiation and the resulting changes in free convection and long-wave radiation exchange in the closed cavities cannot be neglected. The error in the monthly balance method for the calculation of the heating energy demand is with
2-pane glazing is still acceptable. In the case of highly energy-efficient multi-pane glazing, the normative static calculation procedure should be used for the
U-value calculation of transparent glazing components should preferably be replaced by a thermal simulation. Here, the climatic location and orientation should be taken into account for the absorption of short-wave radiation. A simplification for a monthly balance procedure for the respective climate locations of the test reference years (TRY) [DWD] is conceivable.
For the component and building simulation using hourly values and even smaller time steps as well as in the heat period, this model extension has to be implemented. By the realistic simulation of the pane surface temperatures on the room side, the sensation temperature can be calculated and subsequently a comfort evaluation can be carried out.
The results of the investigations in the model building and the simulation are incorporated into proposals for the energy upgrading of existing windows by means of narrow thermal insulation glazing with reduced emissivity. On the basis of this model, the optimum of the space between the panes of the individual noble gases can be determined as a function of the inclination.
The model gives the opportunity to evaluate and subsequently minimize damage processes that affect the durability of transparent building components. For the building simulation, the simulation of the heat fluxes of the glazing and a consideration of the radiation transmission is recommended. The separate simulation of U-values is not to be preferred.
The advice on the design or evaluation of the impairment due to condensation and frost formation on the outside of the glazing of transparent constructions should be continued by implementing the slope dependence of convection in the software and a validation by comparing measurement and simulation.:1. Motivation, Ausgangssituation und Ziele 9
1.1. Motivation 9
1.2. Ziele, Thesen, Methodik und Relevanz des Dissertationsthemas 11
1.3. Strukturierung der Arbeit 16
2. Modellgebäude Handwerk 15 in Görlitz 17
2.1. Energetisches Gesamtkonzept 18
2.1.1. Dämmmaßnahmen 19
2.1.2. Erneuerung Anlagentechnik 20
2.2. Geschichte und Beurteilung des Denkmalwertes des Modellobjektes 24
2.3. Besondere Anforderungen an die Fenster am Beispiel des Gebäudes Handwerks 15 32
2.3.1. Brandschutzanforderungen 32
2.3.2. Schallschutzanforderungen 33
2.3.3. Belichtung 33
2.3.4. Architektonische Anforderungen-Beibehaltung des historischen Erscheinungsbildes 34
2.4. Energetische Ertüchtigung der Fenster des Modellgebäudes 37
2.4.1. Ausgangssituation 37
2.4.2. Verwendete Verglasung und Low-e-Beschichtung 39
2.4.3. Holz-Kastenfenster mit 2-Scheiben-Wärmeschutzverglasung aus Solarglas 41
2.4.4. Holz-Einfachfenster mit 3-Scheiben-Wärmeschutzverglasung aus Solarglas 44
2.5. Messungen und Beobachtungen am Modellgebäude 46
2.5.1. Messkonzept und Dokumentation des Monitorings und Messerfassungssystems 47
2.5.2. Messaufbau zur Erfassung des Innen- und Außenklimas 48
2.5.3. Bauteilmessstrecke Kastenfenster, 2. OG Nord 50
2.5.4. Bauteilmessstrecke Kastenfenster, 1. DG Süd 54
2.5.5. Bauteilmessstrecke Dachliegefenster, Nord, 2. DG 57
2.5.6. Beschreibung von bauphysikalischen Vorgängen bei den Verglasungen 63
2.5.7. Beschreibung von physikalischen Schadprozessen bei Fenstern 65
2.5.8. Zusammenfassung und Fazit aus den Messungen und den Beobachtungen 70
3. Stand der Wissenschaft und Technik 71
3.1. Aktuelle europäische Normung 72
3.2. Analytisches Modell für die Konvektion innerhalb des Scheibenzwischenraumes 78
3.3. Modell nach ISO 15 099 88
3.4. Modell nach Hollands, Unny, Raithby und Konicek u. a. 90
3.5. Modellzusammenstellung nach Klan und Thess 93
3.6. CFD-Simulationen von Mehrscheibenverglasungen 96
3.6.1. CFD-Simulationen im Vergleich zur DIN EN 673 96
3.6.2. CFD-Simulationen in Kombination mit Messungen im Versuchsstand 102
3.7. Übersicht über die Umsetzung der Verglasungsmodelle in den Computerprogrammen 104
3.7.1. Programm glaCE 3.03 von Glas-Trösch 105
3.7.2. Programm Calumen II 1.3.3/ CalumenLive von SAINT-GOBAIN GLASS 105
3.7.3. Programmpaket Optics, Windows und Therm mit Übergabe in Energy Plus 105
3.7.4. Einzonensimulationsprogramm Therakles 3.0 vom Institut für Bauklimatik 110
3.7.5. Programme der Energieeinsparverordnung 111
3.7.6. Programmpaket PHPP 8 111
3.7.7. Übersicht über die Software zur Berechnung von Verglasungskennwerten 112
3.8. Übersicht über die thermische Beanspruchung von Verglasungen 113
4. Vergleich und Bewertung der Konvektionsmodelle 117
4.1. Analytische Konvektionsmodelle 117
4.2. CFD–Simulation mit EasyCFD 124
4.3. Zusammenfassung und Bewertung der Konvektionsmodelle 125
5. Herleitung und Anwendung des Simulationsmodells 127
5.1. Benennung und Beschreibung der Wärmetransportmechanismen 127
5.2. Algorithmus zur thermischen Simulation von transparenten Bauteilen 140
5.3. Auswertung der Messung und der Simulation bei Kastenfenstern 148
5.4. Validierte thermische Simulation der Kastenfenster 156
5.5. Auswertung der Messung bei dem Dachliegefenster 160
6. Energetische Ertüchtigung von Bestandsfenstern 163
6.1. Situation bei Bestandsfenstern 164
6.2. Beispiele für die energetische Fenstersanierung 166
6.2.1. Bestandskastenfenster 167
6.2.2. Kastenfenster mit K-Glass™ 171
6.2.3. Kastenfenster mit Wärmeschutzverglasung und K-Glass im Innenflügelpaar 174
6.2.4. Kastenfenster mit Wärmeschutzverglasung und K-Glass im Außenflügelpaar 178
6.2.5. Energetische Ertüchtigung durch zusätzliche Fensterebene 182
6.3. Ergebnisse der umgesetzten energetischen Ertüchtigung von Bestandsfenstern 186
7. Zusammenfassung und Ausblick 187
Literaturverzeichnis 189
Anhang 197
Anhang I. Begriffe und Kennzahlen der Strömungsmechanik 197
Anhang II. Eigenschaften von Gasen nach DIN EN 673 199
Anhang III. Berechnung des optimalen Scheibenabstandes 202
Anhang IV. Simulation des optimalen Scheibenabstandes 205
Anhang V. Hinweise zur statistischen Auswertung 208
|
226 |
Alterungsverhalten von polymeren Zwischenschichtmaterialien im Bauwesen: Ageing Behaviour of Polymeric Interlayer Materials in Civil EngineeringKothe, Michael 03 December 2013 (has links)
Verbund- und Verbundsicherheitsgläser zeichnen sich durch ein breites Anwendungsspektrum im Bauwesen, im Automobilbau und der Photovoltaikindustrie aus. Dabei werden insbesondere an Verbundsicherheitsglas hohe Anforderungen hinsichtlich der Sicherheitseigenschaften gestellt. Diese Eigenschaften, wie Splitterbindung und Resttragfähigkeit, werden durch einen Verbund aus mindestens zwei Glasscheiben mit einem polymeren Zwischenschichtmaterial realisiert. Aktuell werden in etwa 95% aller Fälle Zwischenschichten aus Polyvinylbutyral für die Herstellung von Verbundsicherheitsglas eingesetzt, da einzig dieses Material bauaufsichtlich geregelt ist. Dabei sind aber auch verschiedene andere Materialien, wie Ethylen-Vinylacetat, thermoplastische Polyurethane oder Ionomere als Zwischenschichten einsetzbar. Aufgrund ihrer Eigenschaften erweisen sich diese für spezielle Anwendungsgebiete als besonders geeignet.
Gegenstand dieser Arbeit ist die Untersuchung verschiedener polymerer Zwischenschichtmaterialien hinsichtlich ihrer Eignung für die Herstellung von Verbund- und Verbundsicherheitsgläsern, speziell im Vergleich zur Polyvinylbutyral-Folie. Dabei wird ein besonderes Augenmerk auf das Alterungsverhalten der Zwischenschichten gelegt, um deren Eignung auch für mehrere Jahrzehnte Standzeit, wie sie für Bauwerke zu erwarten ist, einschätzen zu können. Um das Alterungsverhalten der verschiedenen polymeren Zwischenschichtmaterialien beurteilen zu können, werden zunächst die Materialeigenschaften der verschiedenen Zwischenschichten im ungealterten Zustand an reinen Substanzprüfkörpern beziehungsweise ungealterten Verbundgläsern ermittelt.
Als Alterungsszenarien werden eine Temperaturlagerung, eine Beanspruchung durch wechselnde klimatische Bedingungen, sowie eine Lagerung unter aggressiven Medien und eine Bestrahlungsprüfung zur Beurteilung der Langzeitstabilität durchgeführt. Die verschiedenen Alterungstests mit kleinformatigen Verbundglas-Prüfkörpern wirken sich dabei sowohl auf das optische Erscheinungsbild der Verbundgläser, als auch auf die Materialeigenschaften aus. Neben der Bildung von Blasen, Delaminationen oder Trübungen, führen diese Tests durch chemische Reaktionen oder physikalische Umlagerungen zur Veränderung des Steifigkeits- und Abbauverhaltens der polymeren Zwischenschichtmaterialien.
Auf Grundlage der Ergebnisse der in dieser Arbeit durchgeführten Alterungstests erscheinen das untersuchte Ionomer (DuPont SentryGlas) und ein thermoplastisches Polyurethan (Huntsman Krystalflex PE399) am besten für einen dauerhaften Einsatz als Zwischenschichtmaterial für Verbund- und Verbundsicherheitsgläser als geeignet. Durch eine Anpassung der Einbausituation oder eine Beschränkung der Einsatzgebiete und der damit einhergehenden klimatischen Beanspruchungen können auch die anderen Materialien vorteilhaft eingesetzt werden. / Laminated glass and laminated safety glass are used in a wide range of applications, for example in construction, automotive and photovoltaic industry. High demands on security properties are made, especially to laminated safety glass. These properties, such as binding glass fragments in case of breakage and the residual bearing capacity, will be realized by a composite of at least two panes of glass with a polymeric interlayer material. Currently, in about 95% of all cases, interlayer of polyvinyl butyral are used for the production of laminated safety glass, because this is the only material, which is approved by the building authorities. Various other polymeric materials such as ethylene vinyl acetate, ionomers and thermoplastic polyurethanes can also be used as interlayers. Based on their properties, these materials are suitable for special applications.
Subject of this thesis is the study of various polymeric interlayer materials in reference to their suitability for the production of laminated glass and laminated safety glass, especially in comparison to the polyvinyl butyral interlayer. Especially the ageing behaviour of the interlayer is investigated to estimate their suitability over the lifetime of several decades, which is expected for building structures. To evaluate the ageing behaviour, the material properties of the different polymeric interlayer materials are first determined on the pure, unaged material or unaged laminates.
Different ageing scenarios are carried out to assess the longterm stability, such as a temperature storage test, a climatic stress test as well as test under aggressive media and high irradiation. These ageing tests with small-scale test specimens will affect both the appearance of the laminated glass, as well as the material properties. In addition to the formation of bubbles, delamination or haze, these tests lead to changes in stiffness and degradation behaviour of the polymeric interlayer materials by chemical reactions or physical rearrangements.
Based on the results of the ageing tests in this thesis, the investigated ionomer (DuPont SentryGlas) and a thermoplastic polyurethane (Huntsman Krystalflex PE399) are best suited for a long-term use as interlayer material for laminated glass or laminated safety glass. By changing the structural design or limiting the range of applications, the other investigated materials can also show their advantages for different applications.
|
227 |
Visualization and modeling of evaporation from pore networks by representative 2D micromodelsDing, Yi 19 May 2023 (has links)
Evaporation is a key process for the water exchange between soil and atmosphere, it is controlled by the internal water fluxes and surface vapor fluxes. The focus of this thesis is to visualize and quantify the multiphase flow processes during evaporation from porous media. The retained liquid films in surface roughness (thick-film flow) and angular corners (corner flow) have been found to facilitate and dominate evaporation. Using the representative 2D micromodels (artificial pore networks) with different surface roughness and pore structures, this thesis gives visualizations of the corner and thick-film flow during the evaporation process, presents the enhanced hydraulic continuity by corner and thick-film flow, and tests the validity of the SSC-model which assumes corner flow is dominant for the mass transport during evaporation. Surface roughness and wettability are proved both experimentally and theoretically to play a key role for the time and temperature behaviors of the evaporation process, besides, this thesis shows that for a consistent description of the time-dependent mass loss and the geometry of the corner/thick-film flow region, the fractality of the evaporation front must be taken into account.
|
228 |
Bond of reinforcement in concrete under high loading ratesPanteki, Evmorfia 05 December 2018 (has links)
The bond between concrete and reinforcing steel is fundamental to the load bearing capacity of reinforced concrete structures. Several experimental studies indicate strength or rather resistance enhancements coming with increasingly dynamic loading. The phenomenon is known as strain or loading rate effect and its causes are still not fully clarified.
The work presented herein provides a numerical view of the bond of reinforcement in concrete and investigates its loading rate dependent behaviour. Finite element analyses focusing on structural and inertia effects are carried out. Modelling is conducted at the rib scale, where bond is predominately controlled by mechanical interaction. In the first step, the model is developed and calibrated. Its quality, credibility, and limitations are assessed by a series of numerical case studies and the results are compared with available experimental data. Numerical parametric studies follow. The loading rate dependence of bond is featured, loading rate dependent characteristics are identified, and conclusions on causes of the phenomenon drawn. It is shown that structural effects are strongly involved and the same holds for hydrostatic pressure stress states and inertia effects.
The thesis concludes in reviewing currently available methods for incorporating the results into large-scale simulations and highlighting further investigations and developments that are necessary in order to design dynamic loading-resistant structures in the future.
|
229 |
Systematische Bauwerksanalyse mittels ZfP-Verfahren mit anschließenden Belastungsversuchen im Alten Polizeipräsidium in Frankfurt a. M.Fischer, Markus, Hahn, Gunter, Löhr, Martin, Peseke, Horst 08 November 2023 (has links)
Das 1911–1914 errichtete Neue Königliche Polizeipräsidium am Hohenzollernplatz wurde 1944 teilweise zerstört, wiederaufgebaut und über die fast 110-jährige Lebensdauer immer wieder verändert. Im Zuge der geplanten Revitalisierung des heutigen Kulturdenkmals sind unter anderem Eingriffe in die bestehende Tragkonstruktion vorgesehen, welche zu Änderungen der statischen Systeme sowie des Lastabtrags und der Lastweitergabe führen. In diesem Beitrag werden die Aspekte der systematischen Strukturanalyse am Objekt für eine experimentelle Tragwerksbeurteilung erläutert. Durch Voruntersuchungen mithilfe verschiedener Prüfverfahren wurden Deckentypen, deren Spannrichtungen, Aufbauten und deren Verteilung innerhalb des Gebäudes festgestellt. Anschließend wurden, unter Betrachtung der Schnittgrößenänderung aus den geplanten Eingriffen in die bestehende Deckensysteme, experimentelle Tragsicherheitsbewertungen durchgeführt.
|
230 |
Neues Potential im Structural Health Monitoring: Verteilte faseroptische Sensoren für BestandsbauwerkeNovák, Balthasar, Stein, Franziska, Reinhard, Jochen, Dudonu, Andrian, Zeller, Tanja 08 November 2023 (has links)
Aufgrund der Altersstruktur der Brücken in Deutschland und des überproportional steigenden Schwerlastverkehrs werden umfängliche Erhaltungsmaßnahmen zur Aufrechterhaltung des Infrastrukturnetzes erforderlich. Zur Dynamisierung der Erhaltungsstrategie werden vermehrt kontinuierliche Bauwerksmessungen zur Überwachung und Beurteilung des Bauwerkszustands eingesetzt. Weiterentwicklungen in der Leistungsfähigkeit hochauflösender faseroptischer Sensoren bieten neue messtechnische Möglichkeiten für die großflächige (permanente) Bauwerksüberwachung. Der Beitrag beleuchtet die Potentiale hochauflösender faseroptischer Sensoren zur Zustandsüberwachung von Bestandsbrücken. In einem Pilotprojekt an einer spannungsrisskorrosionsgefährdeten Spannbetonbrücke wurden bzw. werden derzeit faseroptische Sensoren für eine permanente Überwachung installiert und sukzessive in Betrieb genommen. Die Einsatzmöglichkeiten als Dauermonitoringsystem werden anhand der bisherigen Erfahrungen und Ergebnisse demonstriert.
|
Page generated in 0.1056 seconds