• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Social Network Analysis : Link prediction under the Belief Function Framework / Analyse des réseaux sociaux : Prédiction de liens dans le cadre des fonctions de croyance

Mallek, Sabrine 03 July 2018 (has links)
Les réseaux sociaux sont de très grands systèmes permettant de représenter les interactions sociales entre les individus. L'analyse des réseaux sociaux est une collection de méthodes spécialement conçues pour examiner les aspects relationnels des structures sociales. L'un des défis les plus importants dans l'analyse de réseaux sociaux est le problème de prédiction de liens. La prédiction de liens étudie l'existence potentielle de nouvelles associations parmi des entités sociales non connectées. La plupart des approches de prédiction de liens se concentrent sur une seule source d'information, c'est-à-dire sur les aspects topologiques du réseau (par exemple le voisinage des nœuds) en supposant que les données sociales sont entièrement fiables. Pourtant, ces données sont généralement bruitées, manquantes et sujettes à des erreurs d'observation causant des distorsions et des résultats probablement erronés. Ainsi, cette thèse propose de gérer le problème de prédiction de liens sous incertitude. D'abord, deux nouveaux modèles de graphes de réseaux sociaux uniplexes et multiplexes sont introduits pour traiter l'incertitude dans les données sociales. L'incertitude traitée apparaît au niveau des liens et est représentée et gérée à travers le cadre de la théorie des fonctions de croyance. Ensuite, nous présentons huit méthodes de prédiction de liens utilisant les fonctions de croyance fondées sur différentes sources d'information dans les réseaux sociaux uniplexes et multiplexes. Nos contributions s'appuient sur les informations disponibles sur le réseau social. Nous combinons des informations structurelles aux informations des cercles sociaux et aux attributs des nœuds, ainsi que l'apprentissage supervisé pour prédire les nouveaux liens. Des tests sont effectués pour valider la faisabilité et l'intérêt de nos approches à celles de la littérature. Les résultats obtenus sur les données du monde réel démontrent que nos propositions sont pertinentes et valables dans le contexte de prédiction de liens. / Social networks are large structures that depict social linkage between millions of actors. Social network analysis came out as a tool to study and monitor the patterning of such structures. One of the most important challenges in social network analysis is the link prediction problem. Link prediction investigates the potential existence of new associations among unlinked social entities. Most link prediction approaches focus on a single source of information, i.e. network topology (e.g. node neighborhood) assuming social data to be fully trustworthy. Yet, such data are usually noisy, missing and prone to observation errors causing distortions and likely inaccurate results. Thus, this thesis proposes to handle the link prediction problem under uncertainty. First, two new graph-based models for uniplex and multiplex social networks are introduced to address uncertainty in social data. The handled uncertainty appears at the links level and is represented and managed through the belief function theory framework. Next, we present eight link prediction methods using belief functions based on different sources of information in uniplex and multiplex social networks. Our proposals build upon the available information in data about the social network. We combine structural information to social circles information and node attributes along with supervised learning to predict new links. Tests are performed to validate the feasibility and the interest of our link prediction approaches compared to the ones from literature. Obtained results on social data from real-world demonstrate that our proposals are relevant and valid in the link prediction context.

Page generated in 0.1461 seconds