Spelling suggestions: "subject:"infrared, start"" "subject:"infrared, stark""
1 |
The influence of dust grain porosity on the analysis of debris disc observationsBrunngräber, Robert, Wolf, Sebastian, Kirchschlager, Florian, Ertel, Steve 01 February 2017 (has links)
Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution - the so-called 'blowout size' - is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend.
|
2 |
Testing the existence of optical linear polarization in young brown dwarfsManjavacas, E., Miles-Paez, P. A., Zapatero-Osorio, M. R., Goldman, B., Buenzli, E., Henning, T., Palle, E., Fang, M. 07 1900 (has links)
Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inversely proportional to the surface gravity. We aimed to test the existence of optical linear polarization in a sample of bright young brown dwarfs, with spectral types between M6 and L2, observable from the Calar Alto Observatory, and cataloged previously as low gravity objects using spectroscopy. Linear polarimetric images were collected in I and R band using CAFOS at the 2.2-m telescope in Calar Alto Observatory (Spain). The flux ratio method was employed to determine the linear polarization degrees. With a confidence of 3 sigma, our data indicate that all targets have a linear polarimetry degree in average below 0.69 per cent in the I band, and below 1.0 per cent in the R band, at the time they were observed. We detected significant (i.e. P/sigma >= 3) linear polarization for the young M6 dwarf 2MASS J04221413+1530525 in the R band, with a degree of p* = 0.81 +/- 0.17 per cent.
|
3 |
Incidence of debris discs around FGK stars in the solar neighbourhoodMontesinos, B., Eiroa, C., Krivov, A. V., Marshall, J. P., Pilbratt, G. L., Liseau, R., Mora, A., Maldonado, J., Wolf, S., Ertel, S., Bayo, A., Augereau, J.-C., Heras, A. M., Fridlund, M., Danchi, W. C., Solano, E., Kirchschlager, F., del Burgo, C., Montes, D. 19 September 2016 (has links)
Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their counterparts in the solar system are the asteroid and Edgeworth-Kuiper belts. Aims. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighbourhood. Methods. The full sample of 177 FGK stars with d <= 20 pc proposed for the DUst around Nearby Stars (DUNES) survey is presented. Herschel/PACS observations at 100 and 160 mu m were obtained, and were complemented in some cases with data at 70 mu m and at 250, 350, and 500 mu m SPIRE photometry. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the Disc Emission via a Bias-free Reconnaissance in IR and Sub-mm (DEBRIS) consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analysed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. Results. The subsample of 105 stars with d <= 15 pc containing 23 F, 33 G, and 49 K stars is complete for F stars, almost complete for G stars, and contains a substantial number of K stars from which we draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type are 0.26(-0.14)(+0.21) (6 objects with excesses out of 23 F stars), 0.21(-0.11)(+0.17) (7 out of 33 G stars), and 0.20(-0.09)(+0.14) (10 out of 49 K stars); the fraction for all three spectral types together is 0.22(-0.07)(+0.08) (23 out of 105 stars). The uncertainties correspond to a 95% confidence level. The medians of the upper limits of L-dust/L-* for each spectral type are 7.8 x 10(-7) (F), 1.4 x 10(-6) (G), and 2.2 x 10(-6) (K); the lowest values are around 4.0 x 10(-7). The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.
|
4 |
EXTRASOLAR STORMS: PRESSURE-DEPENDENT CHANGES IN LIGHT-CURVE PHASE IN BROWN DWARFS FROM SIMULTANEOUS HST AND SPITZER OBSERVATIONSYang, Hao, Apai, Dániel, Marley, Mark S., Karalidi, Theodora, Flateau, Davin, Showman, Adam P., Metchev, Stanimir, Buenzli, Esther, Radigan, Jacqueline, Artigau, Étienne, Lowrance, Patrick J., Burgasser, Adam J. 14 July 2016 (has links)
We present Spitzer/Infrared Array Camera Ch1 and Ch2 monitoring of six brown dwarfs during eight different epochs over the course of 20 months. For four brown dwarfs, we also obtained simulataneous Hubble Space Telescope (HST)/WFC3 G141 grism spectra during two epochs and derived light curves in five narrowband filters. Probing different pressure levels in the atmospheres, the multiwavelength light curves of our six targets all exhibit variations, and the shape of the light curves evolves over the timescale of a rotation period, ranging from 1.4 to 13 hr. We compare the shapes of the light curves and estimate the phase shifts between the light curves observed at different wavelengths by comparing the phase of the primary Fourier components. We use state-of-the-art atmosphere models to determine the flux contribution of different pressure layers to the observed flux in each filter. We find that the light curves that probe higher pressures are similar and in phase, but are offset and often different from the light curves that probe lower pressures. The phase differences between the two groups of light curves suggest that the modulations seen at lower and higher pressures may be introduced by different cloud layers.
|
5 |
THE CORRELATION BETWEEN METALLICITY AND DEBRIS DISK MASSGáspár, András, Rieke, George H., Ballering, Nicholas 29 July 2016 (has links)
We find that the initial dust masses in planetary debris disks are correlated with the metallicities of their central stars. We compiled a large sample of systems, including Spitzer, the Herschel DUNES and DEBRIS surveys, and WISE debris disk candidates. We also merged 33 metallicity catalogs to provide homogeneous [Fe/H] and sigma([Fe/H]) values. We analyzed this merged sample, including 222 detected disks (74 warm and 148 cold) around a total of 187 systems (some with multiple components) and 440 disks with only upper limits (125 warm and 315 cold) around a total of 360 systems. The disk dust masses at a common early evolutionary point in time were determined using our numerical disk evolutionary code, evolving a unique model for each of the 662 disks backward to an age of 1 Myr. We find that disk-bearing stars seldom have metallicities less than [Fe/H] = -0.2 and that the distribution of warm component masses lacks examples with large mass around stars of low metallicity ([Fe/H] < -0.085). Previous efforts to find a correlation have been largely unsuccessful; the primary improvements supporting our result are (1) basing the study on dust masses, not just infrared excess detections; (2) including upper limits on dust mass in a quantitative way; (3) accounting for the evolution of debris disk excesses as systems age; (4) accounting fully for the range of uncertainties in metallicity measurements; and (5) having a statistically large enough sample.
|
6 |
PROTOPLANETARY AND TRANSITIONAL DISKS IN THE OPEN STELLAR CLUSTER IC 2395Balog, Zoltan, Siegler, Nick, Rieke, G. H., Kiss, L. L., Muzerolle, James, Gutermuth, R. A., Bell, Cameron P. M., Vinkó, J., Su, K. Y. L., Young, E. T., Gáspár, András 18 November 2016 (has links)
We present new deep UBVRI images and high-resolution multi-object optical spectroscopy of the young (similar to 6-10 Myr old), relatively nearby (800 pc) open cluster IC 2395. We identify nearly 300 cluster members and use the photometry to estimate their spectral types, which extend from early B to middle M. We also present an infrared imaging survey of the central region using the IRAC and MIPS instruments on board the Spitzer Space Telescope, covering the wavelength range from 3.6 to 24 mu m. Our infrared observations allow us to detect dust in circumstellar disks originating over a typical range of radii from similar to 0.1 to similar to 10 au from the central star. We identify 18 Class II, 8 transitional disk, and 23 debris disk candidates, respectively, 6.5%, 2.9%, and 8.3% of the cluster members with appropriate data. We apply the same criteria for transitional disk identification to 19 other stellar clusters and associations spanning ages from similar to 1 to similar to 18 Myr. We find that the number of disks in the transitional phase as a fraction of the total with strong 24 mu m excesses ([8] - [24]. 1.5) increases from (8.4. +/- 1.3)% at similar to 3 Myr to (46. +/- 5)% at similar to 10 Myr. Alternative definitions of transitional disks will yield different percentages but should show the same trend.
|
7 |
Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186Souto, D., Cunha, K., Garcia-Hernandez, D. A., Zamora, O., Prieto, C. Allende, Smith, V. V., Mahadevan, S., Blake, C., Johnson, J. A., Jonsson, H., Pinsonneault, M., Holtzman, J., Majewski, S. R., Shetrone, M., Teske, J., Nidever, D., Schiavon, R., Sobeck, J., Garcia Perez, A. E., Gomez Maqueo Chew, Y., Stassun, K. 31 January 2017 (has links)
We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution (R similar to 22,500) H-band spectra from the SDSS-IV-APOGEE survey. Chemical abundances of 13 elements-C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe-are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H2O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities: [Fe/H](Kepler-138) = -0.09 +/- 0.09 dex and [Fe/H](Kepler-186) = -0.08 +/- 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by similar to 0.1-0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55 +/- 0.10 for Kepler-138 and 0.52 +/- 0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.
|
8 |
Rise and fall of the dust shell of the classical nova V339 DelphiniEvans, A., Banerjee, D. P. K., Gehrz, R. D., Joshi, V., Ashok, N. M., Ribeiro, V. A. R. M., Darnley, M. J., Woodward, C. E., Sand, D., Marion, G. H., Diamond, T. R., Eyres, S. P. S., Wagner, R. M., Helton, L. A., Starrfield, S., Shenoy, D. P., Krautter, J., Vacca, W. D., Rushton, M. T. 13 January 2017 (has links)
We present infrared spectroscopy of the classical nova V339 Del, obtained over an similar to 2-yr period. The infrared emission lines were initially symmetrical, with half width half-maximum velocities of 525 km s(-1). In later (t greater than or similar to 77 d, where t is the time from outburst) spectra, however, the lines displayed a distinct asymmetry, with a much stronger blue wing, possibly due to obscuration of the receding component by dust. Dust formation commenced at approximately day 34.75 at a condensation temperature of 1480 +/- 20 K, consistent with graphitic carbon. Thereafter, the dust temperature declined with time as T-d alpha t(-0.346), also consistent with graphitic carbon. The mass of dust initially rose, as a result of an increase in grain size and/or number, peaked at approximately day 100, and then declined precipitously. This decline was most likely caused by grain shattering due to electrostatic stress after the dust was exposed to X-radiation. The appendix summarizes Planck means for carbon and the determination of grain mass and radius for a carbon dust shell.
|
9 |
A Statistical Survey of Peculiar L and T Dwarfs in SDSS, 2MASS, and WISEKellogg, Kendra, Metchev, Stanimir, Miles-Páez, Paulo A., Tannock, Megan E. 29 August 2017 (has links)
We present the final results from a targeted search for brown dwarfs with unusual near-infrared colors. From a positional cross-match of the Sloan Digital Sky Survey (SDSS), 2-Micron All-Sky Survey (2MASS), and Wide-Field Infrared Survey Explorer (WISE) catalogs, we have identified 144 candidate peculiar L and T dwarfs. Spectroscopy confirms that 20 of the objects are peculiar or are candidate binaries. Of the 420 objects in our full sample 9 are young (less than or similar to 200 Myr; 2.1%) and another 8 (1.9%) are unusually red, with no signatures of youth. With a spectroscopic J-K-s color of 2.58 +/- 0.11 mag, one of the new objects, the L6 dwarf 2MASS J03530419 +0418193, is among the reddest field dwarfs currently known and is one of the reddest objects with no signatures of youth known to date. We have also discovered another potentially very-low-gravity object, the L1 dwarf 2MASS J00133470+1109403, and independently identified the young L7 dwarf 2MASS J00440332+0228112, which was first reported by Schneider and collaborators. Our results confirm that signatures of low gravity are no longer discernible in low to moderate resolution spectra of objects older than similar to 200 Myr. The 1.9% of unusually red L dwarfs that do not show other signatures of youth could be slightly older, up to similar to 400 Myr. In this case a red J - K-s color may be more diagnostic of moderate youth than individual spectral features. However, its is also possible that these objects are relatively metal-rich, and thus have enhanced atmospheric dust content.
|
10 |
The Inner 25 au Debris Distribution in the ϵ Eri SystemSu, Kate Y. L., De Buizer, James M., Rieke, George H., Krivov, Alexander V., Löhne, Torsten, Marengo, Massimo, Stapelfeldt, Karl R., Ballering, Nicholas P., Vacca, William D. 25 April 2017 (has links)
Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the Stratospheric Observatory for Infrared Astronomy (SOFIA) 35 mu m resolved disk image of is an element of Eri, the closest debris disk around a star similar to the early Sun. Combining with the Spitzer resolved image at 24 mu m and 15-38 mu m excess spectrum, we examine two proposed origins of the inner debris in is an element of Eri: (1) in situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.
|
Page generated in 0.0808 seconds