• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The First 40 Million Years of Circumstellar Disk Evolution: The Signature of Terrestrial Planet Formation

Meng, Huan Y. A., Rieke, George H., Su, Kate Y. L., Gáspár, András 07 February 2017 (has links)
We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to similar to 40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the beta Pictoris Moving Group,. Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius-Centaurus, and Tucana-Horologium. Our work features: (1) a filtering technique to flag noisy backgrounds; (2) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources; and (3) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 mu m decays relatively slowly initially and then much more rapidly by similar to 10 Myr. However, there is a continuing component until similar to 35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12-20 Myr, including similar to 13% of the original population, and with a post-peak mean duration of 10-20 Myr.
2

ON-SKY PERFORMANCE ANALYSIS OF THE VECTOR APODIZING PHASE PLATE CORONAGRAPH ON MagAO/Clio2

Otten, Gilles P. P. L., Snik, Frans, Kenworthy, Matthew A., Keller, Christoph U., Males, Jared R., Morzinski, Katie M., Close, Laird M., Codona, Johanan L., Hinz, Philip M., Hornburg, Kathryn J., Brickson, Leandra L., Escuti, Michael J. 12 January 2017 (has links)
We report on the performance of a vector apodizing phase plate coronagraph that operates over a wavelength range of 2-5 mu m. and is installed in MagAO/Clio2 at the 6.5 m Magellan Clay telescope at Las Campanas Observatory, Chile. The coronagraph manipulates the phase in the pupil to produce three beams yielding two coronagraphic point-spread functions (PSFs) and one faint leakage PSF. The phase pattern is imposed through the inherently achromatic geometric phase, enabled by liquid crystal technology and polarization techniques. The coronagraphic optic is manufactured using a direct-write technique for precise control of the liquid crystal pattern. and multitwist retarders for achromatization. By integrating a linear phase ramp to the coronagraphic phase pattern, two separated coronagraphic PSFs are created with a single pupil-plane optic, which makes it robust and easy to install in existing telescopes. The two coronagraphic PSFs contain a 180 degrees dark hole on each side of a star, and these complementary copies of the star are used to correct the seeing halo close to the star. To characterize the coronagraph, we collected a data set of a bright (m(L) = 0-1) nearby star with similar to 1.5 hr of observing time. By rotating and optimally scaling one PSF. and subtracting it from the other PSF, we see a contrast improvement by 1.46 magnitudes at 3.5 lambda/D. With regular angular differential imaging at 3.9 mu m, the MagAO vector apodizing phase plate coronagraph delivers a 5 sigma Delta mag contrast of 8.3 (= 10(-3.3)) at 2 lambda/D and 12.2 (= 10(-4.8)) at 3.5 lambda/D.
3

Evolution of CO2, CH4, and OCS abundances relative to H2O in the coma of comet 67P around perihelion from Rosetta/VIRTIS-H observations

Bockelée-Morvan, Dominique, Crovisier, J., Erard, S., Capaccioni, F., Leyrat, C., Filacchione, G., Drossart, P., Encrenaz, T., Biver, N., de Sanctis, M.-C., Schmitt, B., Kührt, E., Capria, M.-T., Combes, M., Combi, M., Fougere, N., Arnold, G., Fink, U., Ip, W., Migliorini, A., Piccioni, G., Tozzi, G. 16 November 2016 (has links)
Infrared observations of the coma of 67P/Churyumov-Gerasimenko were carried out from 2015 July to September, i.e. around perihelion (2015 August 13), with the high-resolution channel of the Visible and Infrared Thermal Imaging Spectrometer instrument onboard Rosetta. We present the analysis of fluorescence emission lines of H2O, CO2, (CO2)-C-13, OCS, and CH4 detected in limb sounding with the field of view at 2.7-5 km from the comet centre. Measurements are sampling outgassing from the illuminated Southern hemisphere, as revealed by H2O and CO2 raster maps, which show anisotropic distributions, aligned along the projected rotation axis. An abrupt increase of water production is observed 6 d after perihelion. In the meantime, CO2, CH4, and OCS abundances relative to water increased by a factor of 2 to reach mean values of 32, 0.47, and 0.18 per cent, respectively, averaging post-perihelion data. We interpret these changes as resulting from the erosion of volatile-poor surface layers. Sustained dust ablation due to the sublimation of water ice maintained volatile-rich layers near the surface until at least the end of the considered period, as expected for low thermal inertia surface layers. The large abundance measured for CO2 should be representative of the 67P nucleus original composition, and indicates that 67P is a CO2-rich comet. Comparison with abundance ratios measured in the Northern hemisphere shows that seasons play an important role in comet outgassing. The low CO2/H2O values measured above the illuminated Northern hemisphere are not original, but the result of the devolatilization of the uppermost layers.
4

SPECTROSCOPIC CHARACTERIZATION OF HD 95086 b WITH THE GEMINI PLANET IMAGER

De Rosa, Robert J., Rameau, Julien, Patience, Jenny, Graham, James R., Doyon, René, Lafrenière, David, Macintosh, Bruce, Pueyo, Laurent, Rajan, Abhijith, Wang, Jason J., Ward-Duong, Kimberly, Hung, Li-Wei, Maire, Jérôme, Nielsen, Eric L., Ammons, S. Mark, Bulger, Joanna, Cardwell, Andrew, Chilcote, Jeffrey K., Galvez, Ramon L., Gerard, Benjamin L., Goodsell, Stephen, Hartung, Markus, Hibon, Pascale, Ingraham, Patrick, Johnson-Groh, Mara, Kalas, Paul, Konopacky, Quinn M., Marchis, Franck, Marois, Christian, Metchev, Stanimir, Morzinski, Katie M., Oppenheimer, Rebecca, Perrin, Marshall D., Rantakyrö, Fredrik T., Savransky, Dmitry, Thomas, Sandrine 21 June 2016 (has links)
We present new H (1.51.8 mu m) photometric and K-1 (1.92.2 mu m) spectroscopic observations of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager. The Hband magnitude has been significantly improved relative to previous measurements, whereas the lowresolution K-1 (lambda/delta lambda approximate to 66) spectrum is featureless within the measurement uncertainties and presents a monotonically increasing pseudocontinuum consistent with a cloudy atmosphere. By combining these new measurements with literature L' photometry, we compare the spectral energy distribution (SED) of the planet to other young planetarymass companions, field brown dwarfs, and to the predictions of grids of model atmospheres. HD 95086 b is over a magnitude redder in K-1 - L' color than 2MASS J120733463932539 b and HR 8799 c and d, despite having a similar L' magnitude. Considering only the near-infrared measurements, HD 95086 b is most analogous to the brown dwarfs 2MASS J2244316+204343 and 2MASS J21481633+4003594, both of which are thought to have dusty atmospheres. Morphologically, the SED of HD 95086 b is best fit by low temperature (T-eff = 8001300 K), low surface gravity spectra from models which simulate high photospheric dust content. This range of effective temperatures is consistent with field L/T transition objects, but the spectral type of HD 95086 b is poorly constrained between early L and late T due to its unusual position the colormagnitude diagram, demonstrating the difficulty in spectral typing young, low surface gravity substellar objects. As one of the reddest such objects, HD 95086 b represents an important empirical benchmark against which our current understanding of the atmospheric properties of young extrasolar planets can be tested.
5

HERSCHEL OBSERVATIONS AND UPDATED SPECTRAL ENERGY DISTRIBUTIONS OF FIVE SUNLIKE STARS WITH DEBRIS DISKS

Dodson-Robinson, Sarah E., Su, Kate Y. L., Bryden, Geoff, Harvey, Paul, Green, Joel D. 16 December 2016 (has links)
Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here we present new Herschel PACS and re-analyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14" along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS PSF size (50% of energy enclosed within radius 4.23"). HD 105211 also has a 24 mu m infrared excess that was previously overlooked because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a(min) similar to 3 mu m, although the a(min) is larger than the radiation pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of model blackbody disks. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 x 10(-5) <= L/L-circle dot <= 2 x 10(-4) , consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.
6

A deep polarimetric analysis of the debris disk HD 106906

Crotts, Katie 28 August 2020 (has links)
HD 106906 is a young, binary stellar system, located at ~103.3 parsecs away in the Lower Centaurus Crux (LCC) group. This system is completely unique among known systems in that it contains an asymmetrical debris disk, as well as an 11 M(Jup) planet companion, at a separation of ~735 AU. Only 4 other systems are known to contain both a disk and detected planet, where HD 106906 is the only one in which the planet has apparently been ejected. Furthermore, the debris disk is nearly edge on, and extends roughly from 70 AU to >500 AU, where previous polarimetric studies with HST have shown the outer regions to have high asymmetry. The presence of a planet companion sparks questions about the origin of this asymmetry. To better understand the structure and composition of the disk, deeper data have been taken with the Gemini Planet Imager (GPI), which we have used to perform a deep polarimetric study of HD 106906’s asymmetrical debris disk. The data were taken in the H-band, and were supplemented with both J- and K1-band polarimetric data which have been obtained through one of GPI’s Large and Long Programs (LLP). Polarimetry is important in the study of debris disks in scattered light, as it helps us constrain their dust grain characteristics, as well as allowing us to obtain high-contrast images. Modelling the disk, along with an empirical analysis of our data, supports a disk that is asymmetrical in surface brightness and structure, as well as a disk that is highly eccentric. These results will be discussed in terms of possible sources of asymmetry, such as dynamical interaction with the planet companion HD 106906b. / Graduate / 2021-07-26

Page generated in 0.062 seconds