• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Response-calibration Techniques For Antenna-coupled Infrared Sensors

Krenz, Peter 01 January 2010 (has links)
Infrared antennas are employed in sensing applications requiring specific spectral, polarization, and directional properties. Because of their inherently small dimensions, there is significant interaction, both thermal and electromagnetic, between the antenna, the antenna-coupled sensor, and the low-frequency readout structures necessary for signal extraction at the baseband modulation frequency. Validation of design models against measurements requires separation of these effects so that the response of the antenna-coupled sensor alone can be measured in a calibrated manner. Such validations will allow confident extension of design techniques to more complex infrared-antenna configurations. Two general techniques are explored to accomplish this goal. The extraneous signal contributions can be measured separately with calibration structures closely co-located near the devices to be characterized. This approach is demonstrated in two specific embodiments, for removal of cross-polarization effects arising from lead lines in an antenna-coupled infrared dipole, and for removal of distributed thermal effects in an infrared phased-array antenna. The second calibration technique uses scanning near-field microscopy to experimentally determine the spatial dependence of the electric-field distributions on the signal-extraction structures, and to include these measured fields in the computational electromagnetic model of the overall device. This approach is demonstrated for infrared dipole antennas which are connected to coplanar strip lines. Specific situations with open-circuit and short-circuit impedances at the termination of the lines are investigated.

Page generated in 0.0863 seconds