• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 13
  • 8
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 151
  • 151
  • 37
  • 30
  • 29
  • 27
  • 26
  • 24
  • 21
  • 20
  • 17
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fabrication of advanced ceramics and selective metallization of non-conductive substrates by inkjet printing

Nur, Hassan Mohammed January 2002 (has links)
Inkjet printing of ceramic components and gold conductive tracks was carried out in this study. A commercial inkjet printer, designed for printing one layer of 2D images on paper, was modified to give adequate resolution, to reverse the substrate for overprinting many layers and to accommodate the increase in thickness of 3D components during printing. Ceramic inks were prepared by wet ball milling and printed to form 3D structures. The powders used were alumina, zirconia, lead zirconate titanate (PZT) and barium titanate. The substrate used for printing the ceramic parts was an overhead transparency. Methods to stop or reduce ink flow were devised and used during printing of the ceramic parts. The alumina and zirconia powders were used for the fabrication of multi-layered laminates. The lead zirconate titanate was used to fabricate components with pillars, walls, vertical channels and x-y-z channel network. During printing of the x-y-z channel network, carbon was used as a support structure and then removed during firing. Barium titanate and carbon powders were used to form the first storey of a capacitor with a multi-storey car park structure. The printed parts were pyrolysed and fired in an oxidising environment and then characterised with scanning electron microscopy. The causes of micro structural defects found were discussed and prevention methods suggested. Organic gold powder was dissolved in methanol and then printed on three different substrates to form conductive gold tracks. The substrates used included alumina, glazed tile and microscope glass slides. The printed tracks were fired in air. The decomposition characteristics of the organic gold compound were studied with TGA and Differential Scanning Calorimetry (DSC). Scanning electron microscope was used to examine the fired gold film for defects and conductivity measurement of the tracks was carried out with a programmable multimeter.
12

Inkjet-printed Light-emitting Devices: Applying Inkjet Microfabrication to Multilayer Electronics

Angelo, Peter 02 August 2013 (has links)
This work presents a novel means of producing thin-film light-emitting devices, functioning according to the principle of electroluminescence, using an inkjet printing technique. This study represents the first report of a light-emitting device deposited completely by inkjet printing. An electroluminescent species, doped zinc sulfide, was incorporated into a polymeric matrix and deposited by piezoelectric inkjet printing. The layer was printed over other printed layers including electrodes composed of the conductive polymer poly(3,4-ethylenedioxythiophene), doped with poly(styrenesulfonate) (PEDOT:PSS) and single-walled carbon nanotubes, and in certain device structures, an insulating species, barium titanate, in an insulating polymer binder. The materials used were all suitable for deposition and curing at low to moderate (<150°C) temperatures and atmospheric pressure, allowing for the use of polymers or paper as supportive substrates for the devices, and greatly facilitating the fabrication process. The deposition of a completely inkjet-printed light-emitting device has hitherto been unreported. When ZnS has been used as the emitter, solution-processed layers have been prepared by spin-coating, and never by inkjet printing. Furthermore, the utilization of the low-temperature-processed PEDOT:PSS/nanotube composite for both electrodes has not yet been reported. Device performance was compromised compared to conventionally prepared devices. This was partially due to the relatively high roughness of the printed films. It was also caused by energy level misalignment due to quantization (bandgap widening) of the small (<10 nm) nanoparticles, and the use of high work function cathode materials (Al and PEDOT:PSS). Regardless of their reduced performance, inkjet printing as a deposition technique for these devices presents unique advantages, the most notable of which are rapidity of fabrication and patterning, substrate flexibility, avoidance of material wastage by using drop-on-demand technology, and the need for only one main unit operation to produce an entire device.
13

Inkjet-printed Light-emitting Devices: Applying Inkjet Microfabrication to Multilayer Electronics

Angelo, Peter 02 August 2013 (has links)
This work presents a novel means of producing thin-film light-emitting devices, functioning according to the principle of electroluminescence, using an inkjet printing technique. This study represents the first report of a light-emitting device deposited completely by inkjet printing. An electroluminescent species, doped zinc sulfide, was incorporated into a polymeric matrix and deposited by piezoelectric inkjet printing. The layer was printed over other printed layers including electrodes composed of the conductive polymer poly(3,4-ethylenedioxythiophene), doped with poly(styrenesulfonate) (PEDOT:PSS) and single-walled carbon nanotubes, and in certain device structures, an insulating species, barium titanate, in an insulating polymer binder. The materials used were all suitable for deposition and curing at low to moderate (<150°C) temperatures and atmospheric pressure, allowing for the use of polymers or paper as supportive substrates for the devices, and greatly facilitating the fabrication process. The deposition of a completely inkjet-printed light-emitting device has hitherto been unreported. When ZnS has been used as the emitter, solution-processed layers have been prepared by spin-coating, and never by inkjet printing. Furthermore, the utilization of the low-temperature-processed PEDOT:PSS/nanotube composite for both electrodes has not yet been reported. Device performance was compromised compared to conventionally prepared devices. This was partially due to the relatively high roughness of the printed films. It was also caused by energy level misalignment due to quantization (bandgap widening) of the small (<10 nm) nanoparticles, and the use of high work function cathode materials (Al and PEDOT:PSS). Regardless of their reduced performance, inkjet printing as a deposition technique for these devices presents unique advantages, the most notable of which are rapidity of fabrication and patterning, substrate flexibility, avoidance of material wastage by using drop-on-demand technology, and the need for only one main unit operation to produce an entire device.
14

3-D jetting for enhanced functionality of thermoset elastomeric materials

Lukic, Marija January 2017 (has links)
The aim of this work was to assess the feasibility of 3-D inkjet printing of elastomers in latex form to create a novel material that would offer shielding against electromagnetic interference (EMI). To achieve this aim it was necessary to characterise and select suitable materials, carry out ink jetting trials, modify the materials accordingly to improve the printability and assess post jetting conditions including drying and curing behaviour. Particle size, surface tension, and viscosity measurements were made for a series of elastomer latex materials and carboxylated styrene butadiene rubber (XSBR) latex was identified as the most suitable. Latex ink optimisation included dilution with water and the addition of a humectant, triethylene glycol monomethyl ether (TGME), which delayed drying and reduced nozzle blocking. The surface energy was measured for arrange of potential substrates and PET was identified as the most suitable, due to its relatively high surface energy which allowed for an ideal level of wetting and spreading. Analysis of the cross-sectional profiles of the printed samples by white light interferometry showed that drying during printing was an important issue for the latex ink. Ink jetting of a composite material with control of filler distribution was shown to be feasible when ten layers of conductive carbon black ink were deposited alternately between ten layers of XSBR ink. Printing was successfully carried out with a latex combined with a resorcinol resin which was subsequently cured, indicating that it should be possible to 3D print a thermoset elastomer in this way. Conductive carbon black was printed in various patterns onto PET sheet and the dielectric properties measured. Results indicated that at very low carbon contents, the printed patterns could provide EMI shielding. The research has shown that it is feasible to create a cured 3D elastomeric object containing filler with a controlled distribution that is capable of providing EMI shielding.
15

Headspace Analysis of Smokeless Powders: Development of Mass Calibration Methods using Microdrop Printing for Chromatographic and Ion Mobility Spectrometric Detection

Joshi-Kumar, Monica 25 March 2010 (has links)
Smokeless powder additives are usually detected by their extraction from post-blast residues or unburned powder particles followed by analysis using chromatographic techniques. This work presents the first comprehensive study of the detection of the volatile and semi-volatile additives of smokeless powders using solid phase microextraction (SPME) as a sampling and pre-concentration technique. Seventy smokeless powders were studied using laboratory based chromatography techniques and a field deployable ion mobility spectrometer (IMS). The detection of diphenylamine, ethyl and methyl centralite, 2,4-dinitrotoluene, diethyl and dibutyl phthalate by IMS to associate the presence of these compounds to smokeless powders is also reported for the first time. A previously reported SPME-IMS analytical approach facilitates rapid sub-nanogram detection of the vapor phase components of smokeless powders. A mass calibration procedure for the analytical techniques used in this study was developed. Precise and accurate mass delivery of analytes in picoliter volumes was achieved using a drop-on-demand inkjet printing method. Absolute mass detection limits determined using this method for the various analytes of interest ranged between 0.03 - 0.8 ng for the GC-MS and between 0.03 - 2 ng for the IMS. Mass response graphs generated for different detection techniques help in the determination of mass extracted from the headspace of each smokeless powder. The analyte mass present in the vapor phase was sufficient for a SPME fiber to extract most analytes at amounts above the detection limits of both chromatographic techniques and the ion mobility spectrometer. Analysis of the large number of smokeless powders revealed that diphenylamine was present in the headspace of 96% of the powders. Ethyl centralite was detected in 47% of the powders and 8% of the powders had methyl centralite available for detection from the headspace sampling of the powders by SPME. Nitroglycerin was the dominant peak present in the headspace of the double-based powders. 2,4-dinitrotoluene which is another important headspace component was detected in 44% of the powders. The powders therefore have more than one headspace component and the detection of a combination of these compounds is achievable by SPME-IMS leading to an association to the presence of smokeless powders.
16

Inkjet-Printed Ultra Wide Band Fractal Antennas

Maza, Armando Rodriguez 05 1900 (has links)
In this work, Paper-based inkjet-printed Ultra-wide band (UWB) fractal antennas are presented. Three new designs, a combined UWB fractal monopole based on the fourth order Koch Snowflake fractal which utilizes a Sierpinski Gasket fractal for ink reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics. It is shown that fractals prove to be a successful method of reducing fabrication cost in inkjet printed antennas while retaining or enhancing printed antenna performance.
17

Kinetika degradace inkjetových barviv / Kinetics of Inkjet Dyes Degradation

Buteková, Silvia January 2015 (has links)
The stability of inkjet print is influenced by a lot of factors. Mutual effects of these factors accelerate the print degradation. The surrounding environment in image stability plays an important role, when the prints degrade especially by the light. The degradation of inkjet prints is presented as a decrease of dye or multiple dyes. It is necessary to know the dye concentration for the dye decrease prediction in the time. This dissertation thesis deals with the study of kinetics and changes in electron and molecular structure of digital photography prints after accelerated ageing tests. The study of resistance of inkjet prints was realized on one type of media using three different sets of inks. Changes in printed colours were measured and evaluated in calibration (by PLS calibration and least squares method). On the basis of calibration the dye decrease prediction of real samples in receiving layer was evaluated. Changes in electron and molecular structure were analysed on KBr pellets by FTIR an UV-Vis spectroscopy.
18

Inkjet Stucturing on Electrode Surfaces

Rianasari, Ina 02 August 2010 (has links)
Alkanethiols spontaneously assembles from solution or vapour on oxide free metal surfaces resulting in a close-packed molecular stuctures with a high degree of orientation and molecular order. In this study, inkjet printing technique is used to immobilize monolayers of alkanethiols on gold electrodes. The quality of the inkjetted monolayers are analyzed by electrochemical methods, i.e. cyclic voltammetry and electrochemical impedance spectroscopy, and by Polarization Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) which show a similar molecular quality to those produced by immersion technique, the standard technique. The kinetic and mass transfer behaviours of micro-scale structures of inkjetted monolayers, e.g. bands and dots array electrodes, are explored by electrochemical methods. The microscale inkjetted structures of monolayers are of interest in the fields of microelectronic devices (e.g. chemical and biosensors) and optoelectronic devices. Taking benefits from multichannel existing in the printhead, mixtures of SAMs are demonstrated. Mixing of monolayers differing in functional groups provides a model surface to study interface phenomena at molecular level such as ion permeation, selective chemical binding, and electron transfer kinetic.
19

Increasing the Processability of Pullulan for Biological Applications by Changes in Molecular Weight

Ng, Robin January 2016 (has links)
Previous studies have shown that pullulan films are able to stabilize enzymes and other labile molecules from thermal and oxidative degradation. Solutions made with commercially available pullulan are extremely viscous and difficult to process limiting the ability to use low-cost printing systems, such as inkjet printers, to format pullulan-containing. In this work, we show that pullulan can be made printable by decreasing its chain length by acid hydrolysis. The acid hydrolysis reaction was modelled using statistical software; the molecular weight of pullulan decreased with increasing reaction time, temperature and acid concentration. Interactions between time and temperature, and temperature and acid concentration were determined to be significant to the reaction as well. The mechanical properties and oxygen permeability of films made from pullulan with different molecular weights were also measured. The films were found to have similar tensile properties and oxygen permeabilities to each other and to those obtained using native pullulan. Using a thermally unstable enzyme (acetylcholinesterase) and an easily oxidizable small molecule (indoxyl acetate) as test materials, it was found that these films have the same ability to stabilize the enzyme and to serve as an oxygen barrier, as the films made with native pullulan. It was also found that pullulan is inkjet printable as long as the molecular weight is 56 kDa. Poor jetting and clogging of the printhead was observed when pullulan with a molecular weight higher than this threshold was used. Microarray printing was also demonstrated by a printing acetylcholinesterase/pullulan in nano-sized volumes using a Dimatix inkjet printer and showing activity of the enzyme after printing and storage at ambient conditions. Proof of concept of microarray printing opens up the potential for future applications of pullulan in other high throughput applications. / Thesis / Master of Applied Science (MASc)
20

DEVELOPING SOFT HIERARCHICALLY-STRUCTURED BIOMATERIALS USING PROTEINS AND BACTERIOPHAGES

Tian, Lei January 2022 (has links)
Bio-interface topography strongly affects the nature and efficiency of interactions with living cells and biological molecules, making hydrogels decorated with micro and nanostructures an attractive choice for a wide range of biomedical applications. Despite the distinct advantages of protein hydrogels, literature in the field has disproportionately focused on synthetic polymers to the point that most methods are inherently incompatible with proteins and heat-sensitive molecules. We report the development of multiple biomolecule-friendly technologies to construct microstructured protein and bacteriophage (bacterial virus) hydrogels. Firstly, ordered and sphericity-controllable microbumps were obtained on the surface of protein hydrogels using polystyrene microporous templates. Addition of protein nanogels resulted in the hierarchical nano-on-micro morphology on the microbumps, exhibiting bacterial repellency 100 times stronger than a flat hydrogel surface. The developed microstructures are therefore especially suitable for antifouling applications. The microstructures created on protein hydrogels paved the way for applying honeycomb template on proteinous bacterial viruses. We developed a high-throughput method to manufacture isolated, homogenous, pure and hybrid phage microgels. The crosslinked phages in each phage-exclusive microgel self-organized and exhibited a highly-aligned nanofibrous texture. Sprays of hybrid microgels loaded with potent virulent phage effectively reduced heavy loads of multidrug resistant Escherichia coli O157:H7 on food products by 6 logs. / Thesis / Doctor of Philosophy (PhD) / Bacteriophages (bacterial viruses), also known as phages, are natural bacteria predators. These viruses act as direct missiles, each phage targeting limited groups of bacteria. In addition, phages are an endless resource for self-propagating nanoparticles that can be used as building blocks for new material. I developed a platform for manufacturing a large quantity of microscale beads made of millions of phages. These micro-beads can be sprayed on fresh produce and meat to remove bacterial contamination (with the added benefit of not affecting taste or smell). I also printed phages on substrates, like an ink. The printed phage ink evolved into a patented technology for designing phage coatings on surfaces with very high surface area, like the small structures on our fingers. This phage coating was successfully used to test the existence of bacteria in liquids.

Page generated in 1.3695 seconds