• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 19
  • 19
  • 15
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 277
  • 55
  • 53
  • 30
  • 28
  • 25
  • 23
  • 23
  • 22
  • 21
  • 20
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Inlet recirculation in radial compressors

Schreiber, Christoph January 2018 (has links)
Deficient performances of turbocharger compressors inside turbo-charged engines limit the behaviour of the drive train. This problem has shifted the design space for compressors towards their performance at part-speed and low-flow conditions. The most dominant feature of these flow conditions is inlet recirculation. It causes a large portion of flow to be expelled through the rotor inlet, creating a blockage ring on the casing. While on the one hand, inlet recirculation is the main loss-source at low-speed and low-flow within centrifugal compressors, on the other hand, it also keeps the compressors functioning because it reduces incidence. This thesis aimed towards increasing the understanding of inlet recirculation, with the scope on improving the part-speed, low-flow performance of automotive turbocharger compressors. The phenomenon was investigated regarding its key features, the conditions at which it occurs and its impact on performance. Furthermore, a reduced order model was derived and the influence of the tip gap size as a design parameter was analysed. The research was carried out on an automotive turbocharger compressor which was investigated experimentally and numerically. Inlet recirculation is a phenomenon which takes place in the tip region of the rotor, extending far downstream and far upstream of the leading edge. The flow within the recirculation bubble features a strong positive swirl component, affecting the work input into the machine. The phenomenon is non-periodic in a time-averaged sense. An investigation of the rotor flow-field regarding inlet recirculation, carried out for the first time, revealed that the starting point of inlet recirculation is located far inside the rotor passage. An analysis based on mass, momentum and energy allowed the derivation of a low-order model to account for inlet recirculation in preliminary design. In the compressor map, inlet recirculation was present over 40% of the map width at low speeds. It maintained its presence with increasing rotor speed beyond the point where the inlet flow became transonic. The losses in the inlet recirculation zone were shown to be up to 35% of the total compressor loss at low speed. A loss analysis showed that inlet recirculation was the main loss source at low-flow conditions. The tip clearance study showed that the size and intensity of inlet recirculation was independent of the tip gap size. Efficiency gains due to reduced tip leakage were marginalised by the presence of inlet recirculation but the rotor maintained enhanced pressure rise capabilities for reduced tip gap sizes.
12

Turbine Inlet Analysis of Injected Water Droplet Behavior

January 2013 (has links)
abstract: Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water droplets. This will then lead to more droplets exiting the inlet and at larger diameters. / Dissertation/Thesis / M.S. Aerospace Engineering 2013
13

A physical and chemical study of Tofino Inlet, Vancouver Island, British Columbia.

Coote, Arthur R. January 1964 (has links)
The distribution of the physical and chemical properties in Tofino Inlet is examined in this study. The presence of shallow thresholds in the entrances to the inlet prevents the exchange of deep water in the inlet with oceanic water of the same depth and restricts the intrusion of oceanic water to that of the surface layer. Replacement of the bottom water of the inlet occurs in the summer, when the density of the oceanic surface water is highest for the year, and accounts for the relatively high bottom temperatures, which are observed throughout the year. Between replacements the bottom water in the upper basins of Tofino stagnates and becomes anoxic. Under these stagnant conditions the oxygen supply of this water is used up. Eventually heterotrophic bacteria use sulphate as hydrogen acceptor for the oxidation of organic matter and produce hydrogen sulphide and carbon dioxide. The production of these substances results in an increase In the alkalinity and a decrease in the pH of the water. Using certain assumptions regarding the oxidative processes, calculations are made which suggest that the observed anomalous increase in alkalinity is mainly due to the dissolution of calcium carbonate in these relatively acidic waters. A rate of oxygen utilization is calculated for the deep basin water and is used to determine whether or not replacement of the bottom water was likely during the summer of 1959. / Science, Faculty of / Chemistry, Department of / Graduate
14

The propagation of the internal tide around a bend in Knight Inlet, B.C.

Webb, Anthony James January 1985 (has links)
This thesis seeks to answer the question "how much of the internal tide propagating up Knight Inlet, B.C. is reflected by a right-angled bend ?" The internal tide in Knight Inlet is generated by the interaction of the barotropic tide with a shallow sill seaward of the bend. It then propagates in both directions as a travelling Kelvin wave. The up-inlet propagating wave then encounters the bend, where some of it may be reflected. This question is looked at with both theory (Chapter 2) and observations (Chapter 3). The theoretical study investigates the propagation of a Kelvin wave around a bend in a channel. The solution of the linearised long wave equations is expressed as a truncated series of cross-channel modes in each of three regions. The solution is matched across the two common boundaries by a least squares point matching process. The "rectangular bend" gives unsatisfactory results because of a singularity in the velocity field at the sharp inside corner. However, the "annular bend" gives good results. The bend acts as a diffraction grating, with total transmission for certain bend angles and "lobes" of high reflection for intermediate angles. Bends to the left give rise to the same reflection as bends to the right of the same angle, even if the incident Kelvin wave has a small cross-channel decay scale. For the parameters corresponding to the M₂ internal tide in Knight Inlet, the energy flux reflection coefficient is very small, much less than 1%. The method of solution breaks down inexplicably for diurnal tides. The observational study is based upon 2⅓ months of cyclesonde current meter data from four stations in Knight Inlet taken during the summers of 1981 and 1983. The vertical profiles of amplitude and phase of the M₂ constituent of longitudinal velocity and density fluctuations are found to be the same from month to month at a particular station, but different from station to station. These complex amplitude profiles are decomposed into a truncated series of normal modes for waves propagating both up-inlet and down-inlet. The phase speeds and zero-crossing depths of the normal modes do not agree with those calculated by Farmer and Smith (1980a) using 1977 data. Two simple models of the stratification are used to explain the differences in the normal modes in terms of differences in the Brunt-Väisälä frequency profile used to calculate them. At the two stations up-inlet of the sill, acceptable fits can be obtained using only two up-inlet propagating waves, indicating that the data are compatible with the low reflection found in the theoretical study. When down-inlet waves are included in the fit, their amplitudes are found to be small, although care must be taken to avoid trying to fit too many modes since some of them are highly correlated in the depth range for which data are available. At the two stations seaward of the sill, the up-inlet energy flux is of the same order of magnitude as the down-inlet flux, indicating a second source of internal tide seaward of those two stations. The results indicate that only 30-50% of the power removed from the barotropic tide is being fed into the internal tide in the summer. This conclusion is at variance with that of Stacey (1985), whose model shows that most of the power lost from the barotropic tide is being fed into the internal tide. A consistent interpretation of these results is that most of the power lost from the barotropic tide initially goes into the internal tide, but that 50-70% of it is rapidly dissipated through turbulence within a couple of kilometers of the sill. The low frequency component of the velocity signals from the cyclesonde data is also presented (Chapter 4), with a brief analysis . The monthly averaged residual velocity profiles are also found to be fairly repeatable from month to month at a particular station, but different from station to station. These profiles could be useful in validating general circulation models. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
15

Surface layer dynamics and a study of finestructure in Knight Inlet, British Columbia

Van der Baaren, Augustine January 1988 (has links)
In the first part of this thesis I investigated the surface layer dynamics of Knight Inlet to see which of the governing forces: inertial accelerations, pressure gradient, or stress, dominated the momentum balance for a steady two-layer flow. I estimated the inertial terms and pressure term in the momentum equation, which had been integrated over the surface layer, from conductivity, temperature, and depth data measured in Knight Inlet in the springs of 1986 and 1987. I solved for the coefficient of interfacial friction, k, so that an estimate of the interfacial stress, Tί = pkΔu², could be made. I obtained the idea of the Knight Inlet analysis from an earlier attempt I had made at resolving the balance of forces in the Fraser River plume. I found an estimate of the friction coefficient at the interface for the plume; k = 1.55 x 10¯⁴, which was much smaller than an assumed value used by Cordes, et al. (1980). The results of the Knight Inlet study showed that within the inlet (inside the sill), the pressure gradient, and the stress dominated the balance for high runoff conditions. Estimates of the coefficient of friction were on the order of 10⁻² and 10⁻³. The depth of the interface appeared to be constant inland of the sill. The second part of this thesis was a qualitative study of fine structure in Knight Inlet. I processed the CTD data measured in 1986 and 1987 to find the first differences of temperature and salinity. I used the profiles of ΔT and ΔS to describe features present in the upper and lower water. Later, data that had been measured with a special microprofiler at the same time as the 1987 CTD data were sampled, were compared to the CTD data. For this comparison, I studied profiles of [formula omitted] (calculated as a centered first difference), and the log of the variance of [formula omitted]. Results of this study were that the upper water (< 30 m) appeared more highly active than the deeper water (> 30 m), especially at the head of the inlet, at the sill, and in the region of the interface. The deeper water contained fluctuations of temperature and salinity that were concentrated in patches which were several meters thick. For the year, 1987, the microprofiler revealed the existence of temperature variations that were more significant than I had originally judged from the profiles of ΔT and ΔS. Values of the variance of the temperature gradient, [formula omitted] in some areas of the deeper water were almost as large as values in the upper water. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
16

On the physical oceanography of Burrard Inlet and Indian Arm, British Columbia

Davidson, Laurie Wayne January 1979 (has links)
Measurements of the distributions of temperature, salinity and oxygen in Burrard Inlet and Indian Arm, British Columbia from May 1974 to October 1975 have been analysed to determine features of the large scale circulation in this system. Observations at roughly four-week intervals were supplemented by serial CSTD casts taken over intervals of a few hours, and by 93-day records of near-bottom currents, temperature, and salinity on the Indian Arm sill. Short-term tidal fluctuations in property distributions have been shown to be small compared to seasonal changes. Circulation in the Burrard Inlet - Indian Arm system is basically estuarine: relatively fresh surface waters normally flow down the inlet overlying more saline waters which enter from the Strait of Georgia. Turbulent mixing associated with estuarine and tidal flow through the shallow constrictions at both First and Second Narrows yields surface waters between the narrows which are more saline and cooler than those which would be found in a simpler estuarine environment. In a complementary sense, bottom waters are fresher and warmer. Significant exchange and overturn of deep water in Indian Arm was recorded between October 1974 and April 1975. Intruding waters were shown to have originated west of First Narrows. In one instance exchange of at least 80% of the volume of the Arm, over an interval of 33 days, was inferred from property distributions, compared to exchange estimates of 111% and 74% deduced from the current meter record for the same event. Exchange was shown to be intermittent, with fresh water runoff volume into Indian Arm, tidal mixing (particularly at Second Narrows) and density of Georgia Strait water being identified as some of the controlling factors. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Unknown
17

Numerical Characterizaton of the Inlet Flow in Eleven Radial Flow Turbomachines

Packard, Nathan O. 13 August 2009 (has links) (PDF)
Statistics based models have been developed previously to predict a priori the performance of new radial flow compressors and pumps and to model test data of previously designed and tested machines. Unfortunately, critical dynamics in the inlet region of the machines were neglected. Consequently, room for improvement in the previous modeling exists. Historical practice has placed a static pressure tap on the shroud just upstream of the impeller leading edge for experimental characterization. The previously developed statistics based models rely on this measured data. However, the location of the tap may be vulnerable to high gradients which would decrease the dependability of the developed models. Full Computational Fluid Dynamics (CFD) and Multi-Stream Tube (MST) analysis were performed to test the appropriateness of the historically placed static pressure tap location and to characterize the inlet flow of typical radial flow turbomachines. All designs and test data were provided by ConceptsNREC and have been collected for over 40 years. Eleven machines were chosen for investigation to provide a wide variety of inlet geometric and flow conditions. The results derived from the Computational Fluid Dynamics and Multi-Stream Tube analysis suggest that the historically placed static pressure tap location is an inappropriate anchor point for model development. Steep gradients in the static pressure indicate that a relatively minor movement of the static pressure tap would significantly alter the experimental results and generate noise in statistical modeling. While large variations in the pressure field are apparent near the impeller leading edge for all machines considered, the study results show that the flow field is uniform and very predictable when well upstream of the impeller leading edge. Specifically, a point 3 blade height upstream from the impeller leading edge appears to be a sound location to anchor model development. The model is highly dependent upon the flow parameters in the inlet passage. Thus it is important to ensure that the model is anchored at a location where the flow conditions are known to be stable and good. Future anchoring of the model upstream of the impeller leading edge will lead to a more accurate prediction and modeling of the design performance for radial flow turbomachines.
18

New Methodology for the Estimation  of StreamVane Design Flow Profiles

Smith, Katherine Nicole 06 February 2018 (has links)
Inlet distortion research has become increasingly important over the past several years as demands for aircraft flight efficiency and performance has increased. To accommodate these demands, research progression has shifted the emphasis onto airframe-engine integration and improved understanding of engine operability in less than ideal conditions. Swirl distortion, which is considered a type of non-uniform inflow inlet distortion, is characterized by the presence of swirling flow in an inlet. The presence of swirling flow entering an engine can affect the compression systems performance and operability, therefore it is an area of current research. A swirl distortion generation device created by Virginia Tech, identified as the StreamVane, has the ability to produce various swirl distortion flow profiles. In its current state, the StreamVane methodology generates a design swirl distortion at the trailing edge of the device. However, in many applications the plane at which the researcher wants a desired distortion is downstream of the StreamVane trailing edge. After the distortion is discharged from the StreamVane it develops as it moves downstream. Therefore, to more accurately replicate a desired swirl distortion at a given downstream plane, distortion development downstream of the StreamVane must be considered. Currently Virginia Tech utilizes a numerical modeling design tool, designated StreamFlow, that generates predictions of how a StreamVane-generated distortion propagates downstream. However, due to the non-linear physics of the flow problem, StreamFlow cannot directly calculate an accurate inverse solution that can predict upstream conditions from a downstream boundary, as needed to design a StreamVane. To solve this problem, in this research, an efficient estimation process has been created, combining the use of the StreamFlow model with a Markov Chain Monte Carlo (MCMC) parameter estimation tool to estimate upstream flow profiles that will produce the desired downstream profiles. The process is designated the StreamFlow-MC2 Estimation Process. The process was tested on four fundamental types of swirl distortions. The desired downstream distortion was input into the estimation process to predict an upstream profile that would create the desired downstream distortion. Using the estimated design profiles, 6-inch diameter StreamVanes were designed then wind tunnel tested to verify the distortion downstream. Analysis and experimental results show that using this method, the upstream distortion needed to create the desired distortion was estimated with excellent accuracy. Based on those results, the StreamFlow-MC2 Estimation Process was validated. / Master of Science
19

2D CFD Simulation of a Circulation Control Inlet Guide Vane

Hill, Hugh Edward 05 February 2007 (has links)
This thesis presents the results of two 2-D computational studies of a circulation control Inlet Guide Vane (IGV) that takes advantage of the Coanda effect for flow vectoring. The IGV in this thesis is an uncambered airfoil that alters circulation around itself by means of a Coanda jet that exhausts along the IGV's trailing edge surface. The IGV is designed for an axial inlet flow at a Mach number of 0.54 and an exit flow angle of 11 degrees. These conditions were selected to match the operating conditions of the 90% span section of the IGV of the TESCOM compressor rig at the Compressor Aero Research Laboratory (CARL) located at Wright-Patterson AFB. Furthermore, using the nominal chord (length from leading edge of the IGV to the jet exit) for the length scale, the Reynolds number for the circulation control IGV in this region was 5e⁵. The first study was a code and turbulence model comparison, while the second study was an optimization study which determined optimal results for parameters that affected circulation around the IGV. Individual abstracts for the two studies are provided below. To determine the effect of different turbulence models on the prediction of turning angles from the circulation control IGV, the commercial code GASP was employed using three turbulence models. Furthermore, to show that the results from the optimization study were code independent a code comparison was completed between ADPAC and GASP using the Spalart-Allmaras turbulence model. Turbulence models employed by GASP included: two isotropic turbulence models, the one equation Spalart-Allmaras and the two-equation Wilcox 1998 k-&#969;. The isotropic models were then compared to the non-isotropic stress transport model Wilcox 1998 Stress-&#969;. The results show good comparison between turning angle trends and pressure loss trends for a range of blowing rates studied at a constant trailing edge radius size. When the three turbulence models are compared for a range of trailing edge radii, the models were in good agreement when the trailing edge is sufficiently large. However, at the smallest radius, isotropic models predict the greatest amount of circulation around the IGV that may be caused by the prediction of transonic flow above the Coanda surface. The optimization study employed the CFD code ADPAC in conjunction with the Spalart-Allmaras turbulence model to determine the optimal jet height, trailing edge radius, and supply pressure that would meet the design criteria of the TESCOM (TESt COMpressor) rig while minimizing the mass flow rate and pressure losses. The optimal geometry that was able to meet the design requirements had a jet height of h/C<sub>n</sub> = 0.0057 and a trailing edge Radius R/C<sub>n</sub> = 0.16. This geometry needed a jet to inflow total pressure ratio of 1.8 to meet the exit turning angle requirement. At this supply pressure ratio the mass flow rate required by the flow control system was 0.71 percent of the total mass flow rate through the engine. The optimal circulation control IGV had slightly lower pressure losses when compared to the cambered IGV in the TESCOM rig. / Master of Science
20

The geochemistry and diatom assemblages of varved sediments from Saanich Inlet, B.C.

Powys, Richard I. L. January 1987 (has links)
Varved, anoxic sediments in Saanich Inlet, British Columbia, are formed by the annual cycle of summer deposition of diatom frustules and winter inputs of terrigenous material derived from land runoff. The objective of this study was to sample the varve record in order to develop a palaeoceanographic history of the Inlet. Box-cores of varved sediments were collected from Finlayson Arm, Saanich Inlet. The cores were quick, frozen upon recovery, to preserve the laminae, were subsequently sectioned and X-radiographs of the sections prepared. The varves were individually sampled and analysed for their diatom assemblages together with carbon, carbonate, major and minor element concentrations and ²¹⁰Pb activity. The chronology of a representative core determined by ²¹⁰Pb was inconsistent with that determined by varve counting. The geochemical data indicated that the upper 15cm of the core had a distinct elemental composition and a lower porosity that indicated a changed sedimentation rate. It also appeared that around 20 years of sediment had been lost from the core-top. The upper sediment contains a carbonate increase linked to a dust dump from a local cement plant which occurred between 1960-1963. In the lower section of the core, both the diatom and the geochemical data indicate seasonal variation expected from the formation of annual varves. However, a well constrained chronology cannot be obtained for this core because of the non-steady state sedimentation. This makes the interpretation of inter-varve variations in the light of regional climatic records impossible. Nevertheless, a change in production on a cycle of approximately 10-15 years is evident and this study provides conclusions that will be useful to future palaeoceanographic investigations on longer cores from a part of the Inlet where sedimentation is more constant. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate

Page generated in 0.2954 seconds