111 |
Enhancing Host Immunity to Avian Influenza Virus using Toll-like Receptor Agonists in ChickensSt. Paul, Michael 23 August 2012 (has links)
Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that mediate host-responses to pathogens. In mammals, TLR ligands promote cellular activation and the production of cytokines. Several TLR ligands have been employed prophylactically for the control of bacterial or viral diseases in the mouse model. However, the TLR-mediated responses in chickens have not been well described. Importantly, the utility of TLR agonists for the control of viral pathogens, such as avian influenza virus (AIV), has not been fully explored in chickens. To this end, the studies described in this thesis characterized the kinetics of in vivo responses in chickens to the TLR4 ligand lipopolysaccharide (LPS) and the TLR21 ligand CpG ODN. It was demonstrated that both of these ligands induced the up-regulation of several immune system genes in the spleen, including those associated with pro-inflammatory and antiviral responses, as well antigen presentation. By harnessing the immunostimulatory properties of TLR ligands, it was also demonstrated that the prophylactic administration of either poly I:C (a TLR3 ligand), LPS or CpG ODN may confer immunity to a low pathogenic avian influenza virus, as determined by a reduction in both oropharyngeal and cloacal virus shedding in infected birds. Furthermore, transcriptional analysis of genes in the spleen and lungs identified interleukin (IL)-8, interferon (IFN)-α and IFN-γ as correlates of immunity. In conclusion, TLR ligands may modulate several aspects of the chicken immune system to induce an anti-viral state, thereby conferring immunity to AIV.
|
112 |
Epithelial cells: an immune modulator in the context of inflammatory bowel diseasesBacker, Jody Lynn Unknown Date
No description available.
|
113 |
Investigations into the role of mPIP, the mouse homologue of hPIP/GCDFP-15, in innate host defenseNistor, Andreea 25 April 2008 (has links)
mPIP is a mouse homologue of human PIP/GCDFP-15 which is an established marker of both malignant and benign pathological conditions of the mammary gland. mPIP gene expression has been identified in both lacrimal and salivary glands of healthy mice and the mPIP protein has been detected in saliva. The mPIP protein has been found to bind oral bacteria, showing the highest affinity for streptococci, suggesting a potential function of mPIP in the non-immune host defense in the mouse oral cavity. Since the exact functions of mPIP are still unknown, we examined the roles of mPIP through both in vitro and in vivo studies, specifically to address the possible role of this protein in non-immune host response through modulating the oral flora.
The in vitro studies were primarily focused on elucidation of the consequences of interaction between mPIP and oral bacteria, in particular to examine whether mPIP plays a role in bacterial aggregation. The in vivo studies addressed the roles of mPIP through the analysis of an mPIP knockout mouse model generated in our laboratory. Following confirmation of the null mutation, the delineating the phenotype of this model was pursued through morphopathological analysis as well as examination of the impact of the lack of mPIP on the mouse oral flora.
The null mutation in the mPIP knockout mice was confirmed by both the gene and protein analysis. Histological analysis revealed lymphocytic proliferation in both the submaxillary and prostate glands of the mPIP knockout mice. In addition, both quantitative and composition differences in the oral flora of mPIP knockout mice were identified when compared with wild-type controls. Specifically, a higher proportion of the oral bacteria of mPIP knockout mice were found to belong to genus Streptococcus and certain genera were found to be absent from the oral cavity of these mice. The effect of knockout mouse saliva, which lacks mPIP, on the aggregation of oral bacteria was compared to wild-type mouse saliva. Our data suggests that mPIP contributes to saliva-induced bacterial aggregation.
While oral flora has multiple functions, including protection against infection, mPIP might play a role in the non-innate host defense through modulating the resident oral flora in the mouse. The identification of lymphocytic proliferation in submaxillary and prostate glands of mPIP knockout mice suggests that mPIP might also interfere with lymphocyte activity, playing a possible immunomodulatory role.
|
114 |
Evaluation of the Dairy/Yeast Prebiotic, Grobiotic-A, in the Diet of Juvenile Nile Tilapia, Oreochromis niloticusPeredo, Anjelica 2011 December 1900 (has links)
Two different feeding trials were conducted to evaluate the effects of dietary supplementation with the dairy/yeast prebiotic GroBiotic-A (GBA) to Nile tilapia diets. A nutritionally complete basal diet was supplemented with GBA at either 1 or 2% of dry weight, and all three diets were fed to triplicate groups of juvenile fish in two consecutive trials. Trial 1 continued for 8 weeks, while Trial 2 was conducted for 5 weeks to more specifically assess immunological responses, intestinal characteristics and disease resistance of tilapia. At the conclusion of Trial 1, there were no differences in weight gain (WG) or feed efficiency (FE) among fish fed the three diets. However, fish fed the diet with GBA at 2% had significantly increased survival and noticeably elevated levels of plasma lysozyme compared to fish fed the basal diet or the diet with GBA at 1%. Similarly, at the conclusion of Trial 2, WG and FE were unaffected by GBA supplementation; however, fish fed the diet with GBA at 2% also exhibited elevated plasma lysozyme as well as significantly (P < 0.05) increased levels of extracellular superoxide anion production (EX-SOAP) by macrophages. Dendrogram analysis of denaturing gradient gel electrophoresis (DGGE) images detected a significantly different microbial community within the intestine of fish fed the diet with GBA at 2% compared to fish fed the basal diet and diet with GBA at 1%. None of the experimental diets resulted in significant improvements to survival after exposure to Streptococcus iniae due to within treatment variability. However, fish fed the diet with GBA at 2% did tend to experience reduced mortality (12.5%) as compared to fish fed the basal diet (35%). Thus, supplementation of GBA at 2% of diet did alter the gut microbiota of tilapia and enhanced immunological responses and disease resistance to S. iniae.
|
115 |
DIFFERENTIAL INNATE IMMUNE RESPONSES CORRELATE WITH THE CONTRASTING PATHOGENICITY OF THE EQUINE H7N7 INFLUENZA VIRUS DEMONSTRATED IN HORSES AND BALB/C MICEZhang, Liang 01 January 2011 (has links)
Equine influenza virus causes a mild, self-limiting upper respiratory disease in its natural host. In stark contrast, equine influenza viruses of the H7N7 subtype produce lethal infection in BALB/c mice. This dissertation explored the mechanism underlying the differential pathogenicity of the equine H7N7 influenza virus observed in horses and BALB/c mice. Initially, a comparative study of the pathogenesis was conducted in BALB/c mice inoculated intranasally with a representative isolate of either H7N7 or H3N8 subtype equine influenza virus. All H3N8 virus-infected mice survived the infection whereas 100% mortality was documented for the mice receiving the H7N7 virus by day 8 post infection. Both viruses replicated to a similar degree in the lungs at the early stages of infection. However, after day 2 post infection until the death of the mice, the pulmonary viral loads of the H7N7 group were significantly higher than those of the control, whereas the H3N8 virus was eventually eradicated from the mice at day 7 p.i. Correspondingly, a vigorous pro-inflammatory cytokine response in the lung was induced by the H7N7 virus but not the H3N8 virus, which reflected a desperate attempt by the host immune responses to restrain the overwhelming infection. The H7N7 virus was poorly sensitive to the innate immune containment, resulting in a significant higher cumulative mortality rate than that of the control virus in chicken embryos aged 9 days and older. On the contrary, in horses, replication of the paired viruses was completely cleared by the host immune responses at day 7 p.i. and the infections produced an acute yet non-lethal illness, albeit the H3N8 virus induced generally more pronounced clinical manifestations than the H7N7 virus. The clinical severity correlated to the difference in cytokine-inducing capacity between the two viruses in horses, as evidenced by the finding that the H3N8 virus triggered significantly higher levels of gene transcription of multiple key inflammatory cytokines in the circulation than those seen for the H7N7 virus. In addition, equine peripheral monocyte-derived macrophages were found to be a target of equine influenza virus and can support the productive replication of the virus in vitro.
|
116 |
An investigation into the role of pattern recognition receptors in canine inflammatory bowel diseaseKathrani, Aarti Ashok January 2011 (has links)
No description available.
|
117 |
Investigations into the role of mPIP, the mouse homologue of hPIP/GCDFP-15, in innate host defenseNistor, Andreea 25 April 2008 (has links)
mPIP is a mouse homologue of human PIP/GCDFP-15 which is an established marker of both malignant and benign pathological conditions of the mammary gland. mPIP gene expression has been identified in both lacrimal and salivary glands of healthy mice and the mPIP protein has been detected in saliva. The mPIP protein has been found to bind oral bacteria, showing the highest affinity for streptococci, suggesting a potential function of mPIP in the non-immune host defense in the mouse oral cavity. Since the exact functions of mPIP are still unknown, we examined the roles of mPIP through both in vitro and in vivo studies, specifically to address the possible role of this protein in non-immune host response through modulating the oral flora.
The in vitro studies were primarily focused on elucidation of the consequences of interaction between mPIP and oral bacteria, in particular to examine whether mPIP plays a role in bacterial aggregation. The in vivo studies addressed the roles of mPIP through the analysis of an mPIP knockout mouse model generated in our laboratory. Following confirmation of the null mutation, the delineating the phenotype of this model was pursued through morphopathological analysis as well as examination of the impact of the lack of mPIP on the mouse oral flora.
The null mutation in the mPIP knockout mice was confirmed by both the gene and protein analysis. Histological analysis revealed lymphocytic proliferation in both the submaxillary and prostate glands of the mPIP knockout mice. In addition, both quantitative and composition differences in the oral flora of mPIP knockout mice were identified when compared with wild-type controls. Specifically, a higher proportion of the oral bacteria of mPIP knockout mice were found to belong to genus Streptococcus and certain genera were found to be absent from the oral cavity of these mice. The effect of knockout mouse saliva, which lacks mPIP, on the aggregation of oral bacteria was compared to wild-type mouse saliva. Our data suggests that mPIP contributes to saliva-induced bacterial aggregation.
While oral flora has multiple functions, including protection against infection, mPIP might play a role in the non-innate host defense through modulating the resident oral flora in the mouse. The identification of lymphocytic proliferation in submaxillary and prostate glands of mPIP knockout mice suggests that mPIP might also interfere with lymphocyte activity, playing a possible immunomodulatory role.
|
118 |
Assessment and Analysis of the Restriction of Retroviral Infection by the Murine APOBEC3 ProteinAydin, Halil Ibrahim 26 August 2011 (has links)
Human APOBEC3 proteins are host-encoded intrinsic restriction factors that can prevent the replication of a broad range of human and animal retroviruses such as HIV, SIV, FIV, MLVs and XMRV. The main pathway of the restriction is believed to occur as a result of the cytidine deaminase activity of these proteins that converts cytidines into uridines in single-stranded DNA retroviral replication intermediates. Uridines in these DNA intermediates disrupt the viral replication cycle and also alter retrovirus infectivity because of the C-to-T transition mutations generated as a result of the deaminase activity on the minus strand DNA. In addition, human APOBEC3 proteins also exhibit a deamination-independent pathway to restrict retroviruses that is not currently well understood. Although the restriction of retroviruses by human APOBEC3 proteins has been intensely studied in vitro, our understanding of how the murine APOBEC3 (mA3) protein restricts retroviruses and/or prevents zoonotic infections in vivo is very limited. In contrast to humans and primates that have 7 APOBEC3 genes, mice have but a single copy. My study of the function and structure of mA3 revealed that it has an inverted functional organization for cytidine deamination in comparison to the human A3G catalytic sites. I have also found that disruption of the integrity of either of these catalytic sites substantially impedes restriction of HIV and MLV. Interestingly, our data shows that mA3 induces a significant decrease in retroviral activity of HIV and MLVs by exploiting both deamination-dependent and -independent pathways. However, the deaminase activity of mA3 is essential to confer long-term restriction of retroviral infection. My observations suggest that mA3 has dual activities, both deamination-dependent and -independent, that work cooperatively to restrict a broad range of human and animal retroviral pathogens. In the context of the intrinsic immune system, APOBEC3 proteins provide a powerful block to the transmission of retroviral pathogens that very few have found ways to evade.
|
119 |
Characterizing Immune-modulatory Components of Human Milk: The Fate and Function of Soluble CD14 and the Human Milk MetagenomeWard, Tonya L. 13 May 2014 (has links)
Background
During the first stages of development human infants are either fed human milk or human milk substitutes (infant formulas). The composition of infant formulas and human milk differ drastically, including a difference in protein constituents and bacterial load. Due to the high global frequency of infant formula use, the humanization of infant formulas to better reflect the complex nature of human milk is warranted. To better understand the role of human milk components, the fate and function of a key bacterial sensor in human milk, soluble CD14, was determined. Additionally, the microbiome of human milk was analyzed from a metagenomic standpoint in an attempt to determine which types of bacteria are present in human milk and what their potential biological function might be.
Results
In rodent models, ingested sCD14 persisted in the gastrointestinal tract and was transferred intact into the blood stream. Once transferred to the blood, ingested sCD14 retained its ability to recognize lipopolysaccharide and initiate an immune response in pups. This transfer of sCD14 across the epithelial barrier was also observed in human cells in vitro, where it appears to be dependent on Toll-like receptor 4. Using Illumina sequencing and the MG-RAST pipeline, the human milk metagenome of ten mothers was sequenced. DNA from human milk aligned to over 360 prokaryotic genera, and contained 30,128 open reading frames assigned to various functional categories. The DNA from human milk was also found to harbor immune-modulatory DNA motifs that may play a significant role in immune development of the infant.
Conclusions
Given the complex nature of human milk in comparison to its bovine or plant based substitutes, the results presented in this thesis warrant future modification of infant formulas to include non-nutritive bioactive components. Current human milk components not yet present in infant formulas include the diverse microbiome of human milk, the immune-modulatory DNAs which those microbes harbor, and bioactive human proteins such as sCD14.
|
120 |
Interactions of Surfactant Protein D with the Glycoproteins Ovalbumin and Alpha-2-MacroglobulinCraig-Barnes, Hayley A. 13 January 2010 (has links)
Surfactant protein D (SP-D) is an important innate immune collectin involved in uptake and clearance of microbes and allergens in the lungs. SP-D has been shown to ameliorate allergic asthma reactions in mice; however, the mechanisms for this are not fully understood. We investigated the role of SP-D in the uptake and clearance of the model allergen ovalbumin (OVA) by macrophages. We discovered that SP-D does not bind OVA but binds fractions with contaminating proteins; ovomucin and ovomacroglobulin. We extended these findings to show that SP-D binds human alpha-2-macroglobulin (A2M) in its cleaved or intact state, in a concentration-, calcium-, and carbohydrate-dependent manner. A2M increases the innate immune potential of SP-D by increasing its ability to agglutinate the bacteria Escherichia coli and Bacillus subtilis. We found that SP-D does not increase the uptake of OVA by murine macrophage cell lines, or by alveolar macrophages in vivo in BALB/cJ mice.
|
Page generated in 0.0692 seconds