1 |
MODIFIED ORDERED MESOPOROUS SILICA MEMBRANES FOR CO <sub>2</sub> -N <sub>2</sub> SEPARATIONKIM, SANGIL January 2003 (has links)
No description available.
|
2 |
Sulfur tolerance of Pd/Au alloy membranes for hydrogen separation from coal gasChen, Chao-Huang 23 February 2012 (has links)
This work provides a detailed characterization study on H2S poisoning of Pd and Pd/Au alloy composite membranes to obtain fundamental understandings of sulfur poisoning phenomena and preparation of sulfur tolerant membranes. The enhancement of the sulfur tolerance by alloying Pd with Au has been confirmed by both permeation test and microstructure analysis (SEM and XRD). While pure Pd membranes exhibited the permeance decline in the presence of H2S due to both sulfur adsorption and bulk Pd4S formation, Pd/Au alloy membranes showed the permeance loss merely resulted from the surface sulfur adsorption without bulk sulfide formation up to 55 ppm H2S. The XPS study confirmed that the H2S adsorption on the Pd/Au alloy surfaces was dissociative, and both surface Au and Pd sulfides were formed with the preferential Au-S bonding. The adsorption type of sulfur on the Pd/Au alloy surfaces was monolayer with a limited coverage, which increased with decreasing temperature. The permeance loss of Pd/Au membranes was essentially fully recoverable in H2, and the integrity of the membranes remained unaltered after the poisoning/recovery tests. Increasing Au composition in the Pd/Au membranes increased the sulfur tolerance. A Pd/Au alloy membrane of 16.7 wt% Au exhibited a permeance over 50% of its original value in the presence of 5 ppm H2S at 400°C, while a Pd membrane showed 85% permeance loss. The Pd/Au alloy membranes were fabricated by the Au displacement deposition, which had an empirical reaction order of 3.2 determined by the AAS. The HT-XRD study verified that the formed Pd/Au alloy layers were thermally stable up to 500°C.
|
3 |
Oxygen Ionic-Conducting Ceramics for Gas Separation and Reaction ApplicationsJanuary 2020 (has links)
abstract: Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or O2-permeable membranes themselves, but also can be incorporated with molten carbonate to form dual-phase membranes for CO2 separation.
Oxygen sorption/desorption properties of perovskite oxides with and without oxygen vacancy were investigated first by thermogravimetric analysis (TGA) and fixed-bed experiments. The oxide with unique disorder-order phase transition during desorption exhibited an enhanced oxygen desorption rate during the TGA measurement but not in fixed-bed demonstrations. The difference in oxygen desorption rate is due to much higher oxygen partial pressure surrounding the sorbent during the fixed-bed oxygen desorption process, as revealed by X-ray diffraction (XRD) patterns of rapidly quenched samples.
Research on using perovskite oxides as CO2-permeable dual-phase membranes was subsequently conducted. Two CO2-resistant MIEC perovskite ceramics, Pr0.6Sr0.4Co0.2Fe0.8 O3-δ (PSCF) and SrFe0.9Ta0.1O3-δ (SFT) were chosen as support materials for membrane synthesis. PSCF-molten carbonate (MC) and SFT-MC membranes were prepared for CO2-O2 counter-permeation. The geometric factors for the carbonate phase and ceramic phase were used to calculate the effective carbonate and oxygen ionic conductivity in the carbonate and ceramic phase. When tested in CO2-O2 counter-permeation set-up, CO2 flux showed negligible change, but O2 flux decreased by 10-32% compared with single-component permeation. With CO2 counter-permeation, the total oxygen permeation flux is higher than that without counter-permeation.
A new concept of CO2-permselective membrane reactor for hydrogen production via steam reforming of methane (SRM) was demonstrated. The results of SRM in the membrane reactor confirm that in-situ CO2 removal effectively promotes water-gas shift conversion and thus enhances hydrogen yield. A modeling study was also conducted to assess the performance of the membrane reactor in high-pressure feed/vacuum sweep conditions, which were not carried out due to limitations in current membrane testing set-up. When 5 atm feed pressure and 10-3 atm sweep pressure were applied, the membrane reactor can produce over 99% hydrogen stream in simulation. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2020
|
4 |
Mesoporous Inorganic Membranes for Water PurificationSchillo, Melissa C. 12 September 2011 (has links)
No description available.
|
5 |
Preparation, characterization and carrier gas transport characteristics of inorganic and organic membranes for application in lactic acid esterification with ethanolOkon, Edidiong January 2018 (has links)
Ethyl lactate (EL) plays a major role as green solvent and also a replacement for most petrochemical solvents. The esterification process of lactic acid and ethanol to produce EL is an equilibrium-limiting reaction and the selective removal of one of the reaction products can be improved using a membrane reactor and when coupled with a heterogeneous catalyst offers an opportunity for process intensification. This thesis investigates the batch process esterification reaction involving lactic acid (LA) and ethanol (EL) in the presence of a water selective membrane using different cation-exchange resin catalysts. The product was analysed using gas chromatograph coupled with mass spectrometry detector (GC-MS). The analytical methods used for the characterisation of the cation-exchange resins and membrane include Fourier transform infrared coupled with attenuated total reflectance (FTIR-ATR), scanning electron microscopy attached to energy dispersive analyser (SEM/EDAX), Liquid nitrogen physisorption and nuclear magnetic resonance (NMR) respectively. A novel method was developed for carrying out esterification reaction in a gaseous phase system using a flat sheet polymeric membrane. Prior to the esterification reaction, different carrier gases were tested with ceramic membrane to determine the suitable carrier gases for the analysis of esterification product. The four carrier gases used for the permeation test were argon (Ar), helium (He), carbon dioxide (CO2) and nitrogen (N2). A 15nm pore size commercially available tubular ceramic support, consisting of 77%Al2O3 and 23%TiO2 with the porosity of 45% was used for the carrier gas investigation. The support was modified with silica based on the sol-gel dip-coating techniques. The dip-coated membrane exhibited a higher molar flux with He (0.046mol m-2s-1) and Ar (0.037mol m-2s-1) with a much lower flux for N2 (0.037mol m-2s-1) and CO2 (0.035 mol m-2s-1) at 0.30 bar. Helium gas with the highest permeation rate were identified as the suitable carrier gas for the analysis of esterification product with GC-MS. The esterification reaction in the presence of four cation-exchange resins to produce ethyl lactate was carried out between 60-160 oC in a batch and membrane processes to determine the effectiveness resin catalysts for LA esterification. The effect of external mass transfer diffusion limitation between the liquid components and the resin catalysts was avoided by increasing the agitation time of the esterification reaction. The percentage conversion rate of the lactic acid feed from the batch process esterification was found to be in the range of 98.6 to 99.8%. The reaction kinetics of the esterification reaction was described based on two simplified mechanisms of Langmuir Hinshelwood model to describe the adsorption components on the surface of the catalysts. The lactic acid feed gave a conversion rate of up to 100 % confirming the effectiveness of the acetate membrane impregnated resin catalysts in the selective removal of water for the separation of ethyl lactate. The significance of producing ethyl lactate through batch process intensified by a water-selective membrane processes can be recommended for industrial LA production.
|
Page generated in 0.0685 seconds