• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Comparative Analysis of Reinforcement Learning Methods

Mataric, Maja 01 October 1991 (has links)
This paper analyzes the suitability of reinforcement learning (RL) for both programming and adapting situated agents. We discuss two RL algorithms: Q-learning and the Bucket Brigade. We introduce a special case of the Bucket Brigade, and analyze and compare its performance to Q in a number of experiments. Next we discuss the key problems of RL: time and space complexity, input generalization, sensitivity to parameter values, and selection of the reinforcement function. We address the tradeoffs between the built-in and learned knowledge and the number of training examples required by a learning algorithm. Finally, we suggest directions for future research.

Page generated in 0.1186 seconds