• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 607
  • 529
  • 396
  • 49
  • 29
  • 24
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 12
  • 11
  • 6
  • Tagged with
  • 2028
  • 427
  • 419
  • 373
  • 346
  • 345
  • 267
  • 244
  • 218
  • 200
  • 153
  • 143
  • 139
  • 134
  • 129
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Susceptibility of Arizona Whiteflies to Chloronicotinyl Insecticides and IRGs: New Developments in the 1999 Season

Li, Yongsheng, Dennehy, Timothy J., Li, Xiaohua, Wigert, Monika E. January 2000 (has links)
Whiteflies are serious pests of cotton, melons, and winter vegetables in Arizona’s low deserts. Successful management of whiteflies requires an integrated approach, a critical element of which is routine pest monitoring. In this paper we report findings of our 1999 investigations of resistance of Arizona whiteflies to insect growth regulators (IGRs) and chloronicotinyl insecticides. Whiteflies collected from cotton fields, melon fields and greenhouses were tested for susceptibility to imidacloprid (Admire/Provado), and two other chloronicotinyl insecticides, acetamiprid and thiamethoxam, and to two insect growth regulators (IGRs), buprofezin (Applaud) and pyriproxyfen (Knack). Contrasts of 1999 and 1998 results indicated increased susceptibilities, on average, to both imidacloprid and buprofezin of whiteflies collected from cotton. A cropping system study showed that whiteflies collected from spring melons had significantly lower susceptibility to imidacloprid than those collected from cotton or fall melons. The opposite was found for pyriproxyfen, to which whiteflies from cotton and fall melons had lower susceptibility than those from spring melons. As in 1998, whiteflies with reduced susceptibility to imidacloprid continue to be found in certain locations, particularly in spring melon fields and greenhouses. Results of our laboratory bioassays on susceptibility of Arizona whiteflies to chloronicotinyl insecticides provided evidence of a low order cross-resistance between imidacloprid, acetamiprid and thiamethoxam. Monitoring in 1999 provided the first evidence of reduced susceptibility of Arizona whiteflies to pyriproxyfen.
252

Reduced Whitefly Infestations in Cotton Using a Melon Trap Crop

Castle, S. J. January 2000 (has links)
A second year of field experiments was completed in 1999 at MAC that explored the potential of using a melon trap crop to reduce whitefly infestations in cotton. The experimental design was altered from 1998 to gain isolation among treatment blocks by using 4 separate fields that helped to avoid the influence of one treatment upon the other. A consistent response of significantly fewer whiteflies in cotton planted within a surrounding melon trap crop, relative to the same area of cotton without the trap crop, was observed throughout the July- September sampling period. Better chemical management of whiteflies in the melons during the second season helped to reduce the large differential in whitefly densities between melons and cotton observed the previous year, but preferentially contributed to a greater differential observed between melonprotected cotton and unprotected cotton. Although the infestation buildup was delayed and the season-long densities of whiteflies in the melon-protected cotton were reduced, the action thresholds for treatment with IGRs were ultimately attained and exceeded. In the present management environment of perhaps only 1 IGR treatment per season, it is unlikely that the melon trap crop approach would provide acceptable control unless a grower was willing to tolerate lateseason whitefly densities higher than the current IPM recommendations.
253

Pink Bollworm: Diapause Larval Exit from Harvested Immature Cotton Bolls and Percentages Surviving to Moth Emergence

Henneberry, T. J., Forlow Jech, L. 06 1900 (has links)
Pink bollworm (PBW), Pectinophora gossypiella (Saunders), diapause larval exit from immature green bolls and larval and pupal mortality after exiting bolls, were studied at Phoenix, AZ in the insectary. Diapause larvae exited immature bolls sporadically during January, February, and early March. Thereafter, exit from the bolls was more consistent and highest numbers emerged in late April, May or early June. Larval and pupal mortality were high during January to early February and March, decreased in mid-March through early June, and increased again in mid-June to early August. Larvae remained in immature bolls as long as 319 days after harvest. Moth emergence was significantly correlated to accumulated heat units (12.8 and 30.6°C lower and upper developmental thresholds).
254

Transgenic Comparisons of Pink Bollworm Efficacy and Response to Heat Stress

Ellsworth, Peter C., Moser, Hal, Henneberry, Tom, Majeau, Ghislane, Subramani, Jay 06 1900 (has links)
Fifteen lines from 3 different cotton families were compared. Each family had a conventional, non-transgenic standard, as well as 4 other transgenic lines. In some cases, near isogenic lines were available that theoretically only vary from their sibling lines in the presence or absence of one or more transgenes. Each Bt line was evaluated for this trait’s efficacy in controlling pink bollworm under high pressure, artificial infestations. Various agronomic properties were measured including yield, micronaire, ginning properties, and fiber quality. Heat tolerance, a key goal for Arizona adapted varieties, was also evaluated using a flower rating system. The Cry1Ac gene performed flawlessly in preventing PBW larval development when expressed alone (Bollgard®) or in combination with Cry2Ab (Bollgard II®) (i.e., 100% effective, 0 large larvae from 30185 PBW entry holes). In all cases where large larvae were found in Bollgard or Bollgard II plots, the plants bearing the infested bolls were not expressing the Cry1Ac toxin. Thus, those few times when larvae were found, it was due to contaminants in the seed supply. The novel Cry2Ab only expressing plants, produced for non-commercial testing purposes, were also very effective in controlling PBW large larval development; however, control was less than the Cry1Ac-expressing lines (99.622%, 3 large larvae from 4436 entry holes). The ramifications of this are discussed. In terms of agronomic performance, the transgenic lines performed similarly within families and usually not different from the conventional standards. In some cases, statistically different results were found; however, in all but a few cases, performance parameters were superior in the transgenic lines when compared to the conventional standard. Even so, there are instances where characteristics of the transgenic line were inferior to the conventional standard, especially in some fiber properties. Heat tolerance was again similar throughout 2 of the cotton families (SG125 and DP50). However, for the DP5415 family, 3 of the 4 transgenic lines outperformed the conventional standard. More testing under more environmental conditions is warranted before firm conclusions are drawn.
255

Looking for Functional Non-Target Differences Between Transgenic and Conventional Cottons: Implications for Biological Control

Naranjo, Steven E., Ellsworth, Peter C. 06 1900 (has links)
Evaluations of the non-target effects of transgenic cotton, modified to express the insecticidal proteins of Bacillus thuringiensis (Bt), have been underway in Arizona since 1999. Here we provide a preliminary report of replicated field studies conducted from 1999 to 2001 to examine comparative affects of Bt cotton on natural enemy abundance, overall arthropod diversity, and natural enemy function. Analyses completed to date indicate that natural enemy abundance and overall arthropod diversity are affected by use of additional insecticides for other pests, but not directly by transgenic cottons in comparison with non-transgenic cottons. Further studies suggest that natural enemy function, measured as rates of predation and parasitism on two key pests (Pectinophora gossypiella (Saunders) and Bemisia tabaci (Gennadius)) of cotton in the western U.S., is unaffected in Bt cotton. Our preliminary results suggest that use of transgenic cotton may not have any unintended effects and represents an extremely selective pest control method that could facilitate the broader use of biological control and IPM in an agricultural system long dominated by the use of broad-spectrum insecticides.
256

Pink Bollworm and Cabbage Looper Motalities and NuCOTN 33B (Bt) Cry1Ac Contents in Cotton Fruiting Forms and Leaves on Increasing Numbers of Days after Planning

Henneberry, T. J., Forlow Jech, L., de la Torre, T., Maurer, J. 06 1900 (has links)
Studies were conducted to follow seasonal susceptibility of feral pink bollworm (PBW), Pectinophora gossypiella (Saunders) larvae to NuCOTN 33B (Bt) and Deltapine (DPL) 5414 in furrow and furrow plus supplementary drip-irrigated cotton field plots. Laboratory bioassays of laboratory - reared PBW larvae to flower buds and bolls and cabbage looper (CL), Trichoplusia ni (Hübner), larval mortality feeding on DPL 5415 and Bt cottons leaves were also conducted. Cry1Ac insect toxic protein contents in the different plant tissue were determined by Enzyme Linked ImmunoSorbent Assay (ELISA) throughout the season to compare in relation to PBW and CL mortality data. Irrigation type had no effect on PBW or CL larval mortality parameters measured. DPL 5415 bolls had 0.15 feral live larvae per boll and no dead larvae per boll compared with no live and 0.12 dead feral larvae per Bt boll. Whole plant samples showed 0.5 to 8.6% live larvae boll infestations compared to no live PBW life stages and no exit holes for Bt bolls. No PBW larvae survived on day four following bioassay infestation of one-third grown Bt flower buds with PBW neonate larvae as compared to 90% larval survival on DPL 5415 flower buds. Immature bolls harvested in the field and artificially infested with PBW larvae in the laboratory showed averages of 3 to 52% live larvae per boll, all in fourth instar of development, for DPL 5415 bolls compared to no live larvae, no development beyond the first instar, and no exit holes for Bt bolls. Cry1Ac protein level in flower buds were 0.11 to 0.16 ppm and 0.14, 0.11 and 0.05 ppm, in each case, per wet weight gram of boll tissue in bolls during the season. For CL leaf bioassays, larval mortalities after 7 days feeding on Bt leaves were variable ranging from 82 to 94% from node 8 on 61 and 82 days after planting (DAP) to 32, 38 and 7% on leaves from node 16 on 82, 117, and 159 DAP, respectively, and 28 and 6% on leaves from node 24 on 117 and 159 DAP. Cry1Ac amounts were 0.96 and 0.85 ppm (wet wgt per g of Bt leaf tissue), from leaves from node 8 (61 and 82 DAP), 0.53, 0.50 and 0.22 ppm (node 16, 82, 117, and 159 DAP) and 0.44 and 0.18 ppm (node 24, 117 and 159 DAP). Numbers of cotton bolls, lint and seed per acre were significantly greater from plots that were furrow plus drip irrigated as compared to furrow irrigated alone. DPL 5415 and Bt cotton yields were not significantly different.
257

Sweetpotato Whitefly Nymph Mortality and Adult and Nymph Honeydew Production Following Treatment with Applaud or Knack

Henneberry, T. J., Forlow Jech, L., Hendrix, D. L., de la Torre, T., Maurer, J. 06 1900 (has links)
Cotton lint contamination from honeydew excreted by sweetpotato whiteflies, Bemisia tabaci (Gennadius), is a serious problem in the textile industry resulting in reduced lint processing efficiency. The insect growth regulators, Applaud® and Knack®, provide effective control of sweetpotato whiteflies on cotton by interfering with their reproduction and development. Protection from honeydew lint contamination is attributed to reduced sweetpotato whitefly populations. We investigated the potential direct effect of Applaud and Knack on sweetpotato whitefly honeydew production. In the field, amounts of the major sugar components of honeydew produced by adults and nymphs collected on day six following Applaud or Knack applications to cotton field plots were not significantly different compared to amounts produced by those collected from untreated plots. In the laboratory, adult mortality and amounts of honeydew sugars produced by adults were not affected by confinement for 48 h on Applaud or Knack residues from cotton leaf dips or following nebulizer contact spray applications. In contrast, mortality of first and second instar nymphs on leaves was higher on day six following leaf dips in Applaud solutions compared with leaf dips in Knack or water solutions. Nymph mortality on day six following leaf dips in Knack solutions was higher than mortality of nymphs following leaf dips in water. Honeydew collected during the period between two to 50 h after leaf dip treatment had reduced amounts of glucose, fructose and trehalulose, but not sucrose and melezitose per nymph compared with honeydew from nymphs on leaves dipped in water. Results were more variable for sugars in honeydew collected 96 to 144 h after leaf dip treatment. Nebulizer sprays of Applaud and Knack to nymphs on cotton leaves also resulted in reduced amounts of sugars in honeydew and nymph mortality following treatments.
258

Cabbage Looper, Tobacco Budworm, and Beet Armyworm Larval Mortalities, Development and Foliage Consumption on Bt and Non-Bt Cottons

Henneberry, T. J., Forlow Jech, L., de la Torre, T. 05 1900 (has links)
Tobacco budworm (TBW), Heliothis virescens (F.), larvae were highly susceptible to feeding on Bt cotton leaves or flower buds with 100% and 96% mortality occurring within 4 days, respectively, compared to an average mortality of 95% for cabbage looper (CL), Trichoplusia ni (Hübner), and 57% for beet armyworm (BAW), Spodoptera exigua (Hübner), after 14 days feeding on Bt leaves. Larval weights, of CL and BAW after 7, 10, or 14 days of feeding on Bt leaves were lower compared with those feeding on non-Bt cotton leaves. BAW, CL, and TBW larvae consumed significantly less Bt leaf area per feeding day compared with DPL 5415.
259

Cry1Ac Toxic Protein in Overwintered Volunteer and Annual Seeded NUCOTN 33B7 (Bt) and Deltapine (DPL) 5415 Cottons: Efffects on Pink Bollworm (PBW) and Tobacco Budworm (TBW) Larval Mortalities

Henneberry, T. J., Forlow Jech, L., de la Torre, T., Maurer, J. 05 1900 (has links)
Season-long protection from pink bollworm (PBW), Pectinophora gossypiella (Saunders), damage has been outstanding each year, since 1996, in NuCOTN 33B7 (Bt) commercial cotton plantings in Arizona. Cotton is a perennial plant and whether or not the insect toxic protein was expressed in overwintered Bt cotton was unknown. This could be a consideration in Arizona Bt resistance monitoring in the field since occasional overwintered volunteer cotton plants may occur. In 2002 we studied Cry1Ac levels in overwintered volunteer Bt cotton plants and determined their effects on PBW and tobacco budworm (TBW), Heliothis virescens F., larval mortalities. No TBW larvae survived three-day feeding periods on Bt leaves compared with < 3% TBW larval mortality feeding on DPL 5415 leaves. PBW larval mortality after three-day feeding on flower buds or seven-day feeding on Bt cotton bolls exceeded 98% compared with 40 to 41 % mortality feeding in DPL 5415 fruiting forms. Cry1Ac toxic protein in leaves, flower buds or cotton bolls of overwintered Bt cotton was not significantly different compared with 2002 seeded cotton.
260

Making Late Season Decisions to Terminate Insecticide Use Against Lygus

Ellsworth, Peter C., Barkley, Virginia 05 1900 (has links)
The focus of our 2002 field study was to answer a fundamental question in insect control. Once spraying has begun for a particular pest, when should it stop? In this case, we are faced with the question of when to discontinue sprays for Lygus hesperus in cotton. Cotton is susceptible to Lygus any time there are productive squares on the plant. This study developed a series of worst-case scenarios in which to provide information on timing of the latest possible sprays of economic benefit. By late planting (30 May) varieties from three different maturity groups, we were able to examine Lygus control dynamics just prior to, at, and after cutout — initiation of cut-out was defined as NAWF = 5. We found large differences in yield among the four Lygus chemical termination (LT) treatments. The earliest termination (LT1, 2 weeks prior to cut-out) suffered the largest losses to Lygus, ca. 20–50% of the maximum yield. Conversely, extending Lygus chemical control 1–3 weeks after cut-out (LT3 & LT4) provided no yield benefit whatsoever, regardless of the variety examined. Maximum yields and maximum profits were gained in the LT2, where Lygus controls were continued up to 1 week prior to cutout. Given that there was only 1 week separating the LT1 and LT2 timings, it is clear that timing is absolutely critical. The timing used in this study corresponds with previously established threshold guidelines; treat when there are at least 15 total Lygus with at least 4 nymphs per 100 sweeps. Levels far exceeded this threshold late in the season, yet additional chemical controls after cut-out provided no additional yield or control benefits. Further, we have confirmed that nymphs are the life stage of major concern with, by far, the most capacity to reduce yields. Nymphal reductions were well-correlated with yield enhancement. The best timing (LT2) achieved ca. 93% reduction in nymphal densities during the critical 3- week period around cut-out. In contrast, adult numbers were reduced by only 16% during the same period. These results establish an upper bound for treatment of Lygus, no later than 1 week prior to cut-out; however, more work is necessary to identify if earlier cessation is possible under more normal planting conditions.

Page generated in 0.0461 seconds