• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Neuromechanical Model for Cockroach Locomotion

Doorly, Nicole C. January 2011 (has links)
No description available.
2

Multi-legged Joint Kinematic Analysis of an Insect Tethered over a Slippery Surface

Brown, Amy Elizabeth 15 July 2011 (has links)
No description available.
3

Design and testing of piezoelectric sensors

Mika, Bartosz 15 May 2009 (has links)
Piezoelectric materials have been widely used in applications such as transducers, acoustic components, as well as motion and pressure sensors. Because of the material’s biocompatibility and flexibility, its applications in biomedical and biological systems have been of great scientific and engineering interest. In order to develop piezoelectric sensors that are small and functional, understanding of the material behavior is crucial. The major objective of this research is to develop a test system to evaluate the performance of a sensor made from polyvinylidene fluoride and its uses for studying insect locomotion and behaviors. A linear stage laboratory setup was designed and built to study the piezoelectric properties of a sensor during buckling deformation. The resulting signal was compared with the data obtained from sensors attached a cockroach, Blaberus discoidalis. Comparisons show that the buckling generated in laboratory settings can be used to mimic sensor deformations when attached to an insect. An analytical model was also developed to further analyze the test results. Initial analysis shows its potential usefulness in predicting the sensor charge output. Additional material surface characterization studies revealed relationships between microstructure properties and the piezoelectric response. This project shows feasibility of studying insects with the use of polyvinylidene fluoride sensors. The application of engineering materials to insect studies opens the door to innovative approaches to integrating biological, mechanical and electrical systems.
4

Design and testing of piezoelectric sensors

Mika, Bartosz 15 May 2009 (has links)
Piezoelectric materials have been widely used in applications such as transducers, acoustic components, as well as motion and pressure sensors. Because of the material’s biocompatibility and flexibility, its applications in biomedical and biological systems have been of great scientific and engineering interest. In order to develop piezoelectric sensors that are small and functional, understanding of the material behavior is crucial. The major objective of this research is to develop a test system to evaluate the performance of a sensor made from polyvinylidene fluoride and its uses for studying insect locomotion and behaviors. A linear stage laboratory setup was designed and built to study the piezoelectric properties of a sensor during buckling deformation. The resulting signal was compared with the data obtained from sensors attached a cockroach, Blaberus discoidalis. Comparisons show that the buckling generated in laboratory settings can be used to mimic sensor deformations when attached to an insect. An analytical model was also developed to further analyze the test results. Initial analysis shows its potential usefulness in predicting the sensor charge output. Additional material surface characterization studies revealed relationships between microstructure properties and the piezoelectric response. This project shows feasibility of studying insects with the use of polyvinylidene fluoride sensors. The application of engineering materials to insect studies opens the door to innovative approaches to integrating biological, mechanical and electrical systems.

Page generated in 0.0723 seconds