• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing a Novel, Safe, and Effective Platform for Generating Flavivirus Vaccines

Porier, Danielle LaBrie 04 May 2023 (has links)
Viruses in the Flavivirus genus (e.g., Zika, yellow fever, dengue, West Nile, and Japanese encephalitis viruses) are arthropod-borne, globally distributed, and can cause a range of neurological or hemorrhagic diseases. The ongoing epidemics of flaviviral disease consistently demonstrate the need for new vaccines capable of outbreak control. However, safe, effective, and easy-to-produce vaccines remain relatively elusive due to limitations of conventional vaccine development that make it difficult to balance safety and efficacy. Insect-specific flaviviruses (ISFVs) are emerging as a novel method to overcome this challenge. Herein, we develop a new flavivirus vaccine platform based on the novel insect-specific flavivirus called Aripo virus, which we used to create a preclinical Zika virus (ZIKV) vaccine named Aripo/Zika virus (ARPV/ZIKV). ARPV/ZIKV is a live recombinant virus consisting of the ZIKV pre-membrane and envelope protein genes expressed on an Aripo virus backbone. In this work, we quantify the safety and efficacy of ARPV/ZIKV in multiple murine models, and begin to elucidate the mechanisms of humoral and cell-mediated immune induction for this new platform. Overall, the vaccine showed no evidence of pathogenicity in immunocompromised or suckling mice, and demonstrated a complete inability to replicate in various vertebrate cell lines. Despite this lack of replication, a single dose of live, unadjuvanted ARPV/ZIKV completely prevented ZIKV disease in mice and prevented in utero ZIKV transmission in gravid mice. Direct protection post-ZIKV challenge appears to be primarily mediated by neutralizing antibodies based on passive transfer, adoptive transfer, and T-cell depletion studies. However, vaccination studies in Rag1 KO, Tcra KO, and muMt- mice demonstrate the critical role of T-cell responses in developing immunity post-vaccination. In summary, ARPV/ZIKV is a promising vaccine candidate that induces robust adaptive immune responses, and this success is a positive indication of ARPV's potential as a new resource for flavivirus vaccine development. This body of work contributes to the rapidly expanding field of insect-specific virus-based vaccines and generates new insights into their optimization. Ultimately, this work may help protect the health of millions of people worldwide that are currently at risk of flavivirus infection. / MPH / Arthropod-borne viruses (especially flaviviruses such as Zika virus (ZIKV), yellow fever virus, West Nile virus) represent a major global health threat and a significant burden on human life. Vaccination is a critical tool for controlling the often unpredictable outbreaks of flavivirus diseases. However, licensed flavivirus vaccines remain relatively elusive. This is, in part, because the same characteristics of traditional live-attenuated vaccines that make them highly effective can also reduce their safety. Insect-specific flaviviruses (ISFVs) are emerging as a novel method to overcome this challenge. ISFVs only replicate in insects and thus are safe in humans. They do not cause disease in vertebrates, eliminating the need for the chemical or physical inactivation methods required by traditional whole inactivated vaccines and which can result in reduced efficacy. Herein, we develop a new flavivirus vaccine platform based on a novel ISFV called Aripo virus (ARPV). As proof of concept, we used ARPV to create a preclinical ZIKV vaccine named Aripo/Zika virus (ARPV/ZIKV). ARPV/ZIKV expresses immune system-stimulating ZIKV structural proteins on its virus particle. However, it remains highly safe because the genetic material from ARPV makes it incompatible for replication in human cells. Here, we demonstrate the safety and protective ability of ARPV/ZIKV, and begin to elucidate its mechanisms of protection. Overall, ARPV/ZIKV shows promise as a ZIKV vaccine candidate, which supports the potential of ARPV as a platform for new flavivirus vaccines and the potential to protect the health of the millions of people currently at risk of flavivirus infection.
2

An Examination of the Safety and Efficacy of Aripo-Zika as a Zika Virus Vaccine Candidate

Tanelus, Manette 31 August 2022 (has links)
Flaviviruses are a genus of vector-transmitted viruses that are nearly globally distributed, and flavivirus infections can result in life threatening diseases. Many flaviviruses such as Dengue, West Nile, yellow fever and Zika viruses are globally distributed. Zika virus (ZIKV) is a single strand positive-sense RNA virus, and its disease has been linked to Guillain Barré Syndrome (i.e., a debilitating autoimmune disorder that affects the nerves) in adults and congenital birth defects including microcephaly (i.e., a neurodevelopmental disorder due to impaired neural cell proliferation) in newborns. Insect-specific flaviviruses (ISFVs) are understudied given their apathogenic characteristics to humans and animals. However, given their close genetic relationship to vertebrate infectious flaviviruses, ISFVs can serve as a delivery system (i.e., vector) for flavivirus antigenic proteins. Aripo virus (ARPV) is a recently discovered ISFV isolated in Trinidad. We developed a chimeric Zika vaccine, Aripo-Zika, by substituting the pre-membrane and envelope genes of ZIKV into the ARPV genome. Here, we explored (i) the efficacy of Aripo-Zika (AZ) vaccination by evaluating passive transfer of maternal antibodies, (ii) the optimal dosage regimen, (iii) anti-vector immunity to the ARPV backbone, and (iv) the effects of boosters on vaccine efficacy. We also evaluated AZ safety via a co-infection study. Our results show a near linear relationship between increased dose and immunogenicity, with 1011 genome copies being the most effective minimum dose administered. Inclusion of boosters further increased the immunogenicity of AZ. Additionally, prior immunization with AZ showed minimal effects on subsequent immunization with an ARPV-West Nile virus (AWN) vaccine candidate, confirming the applicability of the ARPV backbone to multiple flavivirus vaccine candidates. In vitro co-infection of ZIKV with ARPV, and ZIKV with AZ in African green monkey kidney cells (i.e., Vero-76) indicated ARPV and AZ remain incapable of replication in vertebrate cells, even in the presence of active ZIKV replication. Altogether, our data suggests that the ARPV platform is a safe and effective strategy for the development of flavivirus vaccines. / Master of Science in Life Sciences / Vaccines are one of the best tools available since their initial conception. Vaccines have collectively increased human lifespan and reduced the burden of disease in humans and animals worldwide. Vaccine research aims to create vaccines that have a perfect balance of safety and efficacy. The goal is to produce a vaccine that can generate a strong immune response against the virus(es) of interest, while causing the least harm or side effects from the vaccine. Insect-specific viruses are viruses that infect insect cells, but are unable to replicate in humans or other vertebrate cells. The Auguste Lab has created a chimeric vaccine using the genome of an insect-specific virus called Aripo-Zika virus (AZ) that is genetically related to Zika virus. A person vaccinated with AZ is expected to develop an immune response against Zika but would not have any disease or side effects associated with a Zika infection or virus replication. In order to determine if this vaccine would be safe and effective enough to advance to clinical trials in humans, we must first determine if it is safe in smaller animal models. My studies have five central aims. First, determine the lowest dose of AZ that can be given and still be protective against Zika disease in mouse models. Second, determine if boosters are necessary and if they increase protection. Third, determine if immunity derived from vaccination can be passed down from mother to pups. Fourth, determine if Zika virus and AZ can co-exist in the same cell line without AZ replication occurring. Lastly, determine if mice can be vaccinated with AZ and subsequently with another similar Aripo virus-based vaccine (i.e., Aripo-West Nile) without changing the effectiveness of the subsequent immunization. Our results showed that AZ is able to be passed from mother to pup, 1011 genome copies is the minimum protective dose, and boosters can increase the effectiveness of AZ. We also found that AZ does not replicate in vertebrate cells when it co-exists with ZIKV and subsequent vaccination with Aripo-West Nile does not seem affect the effectiveness of either vaccine.

Page generated in 0.0881 seconds