• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of thermal non-equilibrium for turbulent transport in porous media.

Marcelo Batista Saito 12 May 2006 (has links)
The literature has documented proposals for macroscopic energy equation modeling for porous media considering the local thermal equilibrium hypothesis and laminar flow. In addition, a two-energy equation model has been proposed for conduction and laminar convection in packed beds. With the aim of contributing to new developments, this work treats turbulent heat transport modeling in porous media under the local thermal non-equilibrium assumption. Macroscopic time-average equations for continuity, momentum and energy are presented based on the recently established double decomposition concept (spatial deviations and temporal fluctuations of flow properties). Interfacial heat transfer coefficients are numerically determined for an infinite medium over which the fully developed flow condition prevails. The numerical technique employed for discretizing the governing equations is the control volume method. Laminar and turbulent flow results for the macroscopic heat transfer coefficient, between the fluid and solid phase in a periodic cell, are presented. Furthermore, fully developed forced convection in a porous channel bounded by parallel plates is considered based on a two-energy equation model. In conclusion, solutions for temperature profile and Nusselt number are obtained and presented for laminar and turbulent flows.

Page generated in 0.3543 seconds