• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 617
  • 325
  • 209
  • 88
  • 23
  • 20
  • 20
  • 15
  • 11
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1646
  • 275
  • 252
  • 121
  • 112
  • 105
  • 104
  • 102
  • 97
  • 89
  • 84
  • 72
  • 68
  • 65
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Radar Signatures of Auroral Plasma Instability

Schlatter, Nicola January 2015 (has links)
Incoherent scatter radars are powerful ground based instruments for ionospheric measurements. By analysis of the Doppler shifted backscatter spectrum, containing the signature of electrostatic plasma waves, plasma bulk properties are estimated. At high latitudes the backscattered radar power is occasionally enhanced several orders of magnitude above the thermal backscatter level. These enhancements occur during geomagnetic disturbed conditions and are referred to as naturally enhanced ion acoustic echoes (NEIALs). NEIALs are linked to auroral activity with optical auroral emission observed in the vicinity of the radar measurement volume simultaneously to NEIALs. The backscatter enhancements are thought to be caused by wave activity above thermal level due to instability. A number of theories have been put forward including streaming instabilities and Langmuir turbulence to explain NEIAL observations. NEIALs occur in two classes distinct by their Doppler features. Observations of the first type, which has been studied more extensively, are generally modelled well by the Langmuir turbulence model. The difficulty in trying to understand the driving mechanism of the instability is the limited spatial resolution of the radar measurements. Observations of the second type, reported on more recently, have been interpreted as evidence for naturally occurring strong Langmuir turbulence by means of their Doppler features. Aperture synthesis is a technique to increase the spatial resolution of the radar measurements to below beam width of the single receiver antennas. The technique is employed to investigate the structure of NEIALs in the plane perpendicular to the magnetic field at sub-degree scale corresponding to hundreds of meters to a few kilometres at ionospheric altitudes. Calibration of the radar interferometer is necessary and a calibration technique is presented in paper I. Interferometry observations of a NEIAL event with receivers deployed at the EISCAT incoherent scatter radar on Svalbard are presented in paper II. The size of the enhanced backscatter region is found to be limited to 900 x 500m in the plane perpendicular to the geomagnetic field. These observations constitute the first unambiguous measurements giving evidence for the limited size of the enhanced backscatter region. In paper III observations of strong Langmuir turbulence signatures are presented. The apparent turbulent region in these observations is limited to two narrow altitude regions, 2km extent, and electron density irregularities caused by the turbulence are thought to reach down to decimeter scale length. The turbulence observations were obtained during energetic electron precipitation thereby differing from other observations during which a low energy component in the electron precipitation is reported. In paper IV a statistical study of strong Langmuir turbulence radar signatures is presented. The study reveals differing local time distributions for these signatures from type I NEIALs indicating di_ering driving conditions for the two types of NEIALs. It is found that strong Langmuir turbulence signatures are predominantly observed in the pre-midnight sector where auroral break-up aurora prevails. / <p>QC 20150303</p>
102

The roles of CtIP in the maintenance of genome stability and control of cell differentiation : a dissertation /

Gu, Bingnan. January 2006 (has links)
Dissertation (Ph.D.).--University of Texas Graduate School of Biomedical Sciences at San Antonio, 2006. / Vita. Includes bibliographical references.
103

Singularity analysis by summing power series

Khan, Md Abdul Hakim January 2001 (has links)
No description available.
104

Prosthecobacter BtubAB form bacterial mini microtubules

Deng, Xian January 2018 (has links)
The tubulin/FtsZ superfamily contains a large set of proteins that spans through all kingdoms of life, with αβ-tubulins being the eukaryotic representatives and FtsZ being the best studied prokaryotic homologue. It is believed that all tubulin/FtsZ-related proteins have evolved from a common ancestor, however, members from this superfamily have diverged in many aspects. αβ-tubulins polymerise into giant and hollow microtubules in the presence of GTP. Despite the size of around 25 nm wide, microtubules display sophisticated dynamics. In particular, dynamic instability, the stochastic change between fast growth and rapid shrinkage, is a hallmark of microtubules. In contrast to αβ-tubulins, FtsZ lacks the C-terminal domain of tubulins and it probably functions as single homopolymeric protofilaments, possibly through treadmilling dynamics. There is strong divergence of the biological functions in the tubulin/FtsZ superfamily. Microtubules are involved in fundamental processes such as motility, transport and chromosomal segregation, whereas FtsZ is involved in bacterial cytokinesis (bacterial cell division), and the equivalent role of FtsZ is carried out by actin-based and ESCRTIII-based systems in eukaryotes. It seems that there is a big evolutionary gap between αβ-tubulins and FtsZ, and the only properties that are conserved within the tubulin/FtsZ superfamily are fold, protofilament formation and GTPase activity. In 2002, a pair of tubulin-like genes, btuba and btubb were identified in Prosthecobacter bacteria, with higher sequence homology to eukaryotic tubulins than FtsZ or any other bacterial homologues. The crystal structures solved later revealed, again, a closer similarity to αβ-tubulins than to their prokaryotic equivalents. It has been known for a while that BtubAB form filaments in the presence of GTP, however, little knowledge has been available regarding the filament architecture. In this project, I determined the near atomic resolution structure of the in vitro BtubAB filament using cryoEM and cryoET, revealing a hollow tube that consists of four protofilaments. A closer look showed that BtubAB filaments have many conserved microtubule features including: an overall polarity, similar longitudinal contacts, M-loops in lateral interfaces, and the presence of the seam, a structural hallmark of microtubules. My study also shows that BtubC, a protein with a TPR fold, binds to the BtubAB filaments in a stoichiometric manner, similar to some MAPs on microtubules. Based on this work, I concluded that BtubAB from Prosthecobacter form bacterial ‘mini microtubules’, and my work provided interesting insight into the evolution of tubulin/FtsZ-related proteins.
105

Hypermobility, ACL reconstruction & shoulder instability : a clinical, mechanical and histological analysis

Akhtar, Muhammad Adeel January 2016 (has links)
Joint movements are essential for the function of human body during the activities of daily living and sports. The movement of human joints varies from normal to those which have an increased range of joint movement (gymnasts) to those with extreme disabling laxity in patients with a connective tissue disorder (Ehlers Danlos Syndrome). “Hypermobility" is most commonly used to describe excessive movement. Hypermobility was assessed by using the current criteria of the Beighton score for signs and the Brighton criteria for symptoms of hypermobility in a group of orthopaedic patients attending the specialist knee and shoulder injury clinics. The Beighton score was found to be higher in patients attending for primary ACL reconstruction (mean 2.9, p = 0.002) and revision ACL reconstruction (mean 4, p < 0.001) when compared with the control group. Hypermobility was a risk factor for the failure of ACL reconstruction (30% vs 0%). The mean Beighton score was higher in both the primary shoulder dislocation group (mean difference 1.8, p=0.001) and the recurrent shoulder dislocation group (mean difference 1.4, p=0.004). Bone defects were studied on the CT scan following shoulder dislocations. There was no correlation between hypermobility and the bone defects. The bone defect was a risk factor for recurrent shoulder instability (48% vs 16%). A material testing system was used to assess the tissue laxity of discarded hamstring tendon and shoulder capsule obtained during stabilisation procedures. The mean gradient of slope for both tendon and capsule graphs was 23.8 (range 3.08-52.63). The tissue laxity was compared to the Beighton score, however no correlation was detected between the Beighton score and the gradient of the tissue laxity. An electronic goniometer was used to measure the angle of the MCP joint of the little finger, whilst a force plate system simultaneously measured the force required to hyperextend the MCP joint. The little finger MCP joints of each hand were assessed in this manner in a group of patients undergoing primary ACL reconstruction or open shoulder stabilization. The mean force required to produce the 40 degrees angle at the little finger MCP joint was 0.04 kg with a range from 0-0.11 kg. There was a positive correlation between the gradient of tissue laxity and the force required to produce 40 degrees angle at the little finger of the dominant hand. The expression of Collagen V and Small leucine rich proteoglycans (Decorin and Biglycan) was studied in the skin, hamstring tendon and shoulder capsule of the patients described above attending with shoulder or knee instability. These patients had different levels of hypermobility (as assessed by the Beighton score) and symptoms of hypermobility (as assessed by the Brighton criteria to diagnose Benign Joint Hypermobility Syndrome). The weaker tendon group was found to have a lower mean Beighton score, while the weaker skin group had a higher mean Beighton score. Collagen V expression was higher in the skin dermal papillae of the weaker group. The Beighton Scores were higher in patients with ACL and shoulder injuries. Hypermobility was a risk factor for the failure of ACL reconstruction. There was no correlation between hypermobility and the bone defects on the CT scan following shoulder dislocation. Bone defects were a risk factor for recurrence. There was no correlation between the Beighton Score and the tissue laxity. There was a correlation between the tissue laxity and the clinical assessment of laxity at the little finger MCPJ by using a force- goniometer system. There was a correlation between the collagen V expression in the dermal papillae of the skin and the Beighton score.
106

Biomechanics of the posterior cruciate ligament and design of a synthetic replacement

Race, Amos January 1997 (has links)
No description available.
107

Role Of Hydrogen Injection Temperature On The Combustion Instability Of Cryogenic Rocket Engine

Biju Kumar, K S January 2012 (has links) (PDF)
Physical mechanism for high frequency instability in cryogenic engines at low hydrogen injection temperature has been a subject of debate for long time. Experimental and early developmental studies revealed no instabilities and it was only much later when liquid hydrogen at lower initial temperature (~50 to 100 K) was injected into the combustion chamber that instabilities were detected. From the compilations of the experimental data related to the instability of cryogenic engines by Hulka and Hutt, it was found that the instability was strongly connected to the temperature of hydrogen. Experiments conducted with hydrogen temperature ramping from a higher value to lower values indicated that the temperatures in excess of 90 K favor stability under most practical operating conditions. Even though this has been known for over forty years, there has been no clear and simple explanation for this. Many physical mechanisms have been hypothesized to explain how temperature ramping causes instability, but all appear to have limited range of applicability. Current understanding of cryogenic engine combustion instability has been achieved through a combination of experimental investigation and approximate analytical models as well as CFD tools. Various researchers have tried to link the low hydrogen injection temperature combustion instability phenomena with various potential mechanisms for combustion instability. They involve coupling of combustion acoustics with atomization, vaporization, mixing, chemical kinetics or any combination of these processes. Various studies related to the effect of recess, injector hydrodynamics, acoustic damping of gas liquid scheme injectors and effect of drop size distribution on the stability characteristics of cryogenic engines were compiled in the thesis. Several researchers examined fuel droplet vaporization as the rate controlling mechanism. Recently a new method for the evaluation of stability characteristics of the engine using model chamber were proposed by Russians and this is based on mixing as the rate controlling mechanism. Pros and cons of this method were discussed. Some people examined the combustion instability of rocket engines based on chemistry dynamics. A considerable amount of analytical and numerical studies were carried out by various researchers for finding out the cause of combustion instability. Because of the limitations of their analysis, they could not successfully explain the cause of combustion instability at low hydrogen injection temperature. A compilation of previous numerical studies were carried out. A number of researchers have applied CFD in the study of combustion instabilities in liquid propellant rocket engines. In the present thesis, a theoretical model has been developed based on the vaporization of droplets to predict the stability characteristics of the engine. The proposed concept focuses on three dimensional simulation of combustion instability for giving some meaningful explanations for the experimental work presented in the literature. In the present study the pressure wave corresponding to the transverse modes were superimposed on a three dimensional steady state operating conditions. Steady state parameters were obtained from the three dimensional combustion modeling. The conservation equations for mass, momentum and energy are non dimensionalized for facilitating the order of magnitude analysis. In order to do the stability analysis, variables are represented as the sum of their steady values and deviation from the steady state. A harmonic time dependence is assumed for the perturbations. For the transverse mode of oscillations independent variables of the zeroth order equations are r and θ only and the dependant variables are not functions of the axial distance. The axial dependence comes only through the first order equations. In this analysis, the wave motion in the combustion chamber is assumed to be linear, confining the nonlinearity to the vaporization process only. The reason behind making this assumption is that the vaporization process is the major mechanism driving the instability. Vaporization histories of liquid oxygen drops in a combustor with superimposed transverse oscillations were computed and stability characteristics of the engine were estimated. The stability characteristics of the engine are accessed from the solutions of first order equations. Effects of various parameters like droplet diameter, hydrogen injection temperature and hydrogen injection area on the stability characteristics of cryogenic engines are studied. A comparison of predicted and published experimental results was made which showed general agreement between experiment and computation. The present study and experimental results show clearly that hydrogen injection velocity is the critical parameter for instability rather than hydrogen injection temperature. What has happened in actual experiments when hydrogen injection temperature is varied is an effective alteration of the injection velocity that leads to the situation of instability. For higher relative velocity between hydrogen and liquid oxygen, the response of the vaporization rate in the presence of pressure wave is minimum compared to lower relative velocity. Due to this cryogenic engines will go to unstable mode at lower relative velocity.
108

Study of the Instability and Dynamics of Detonation Waves using Fickett's Analogue to the Reactive Euler Equations

Tang, Justin January 2013 (has links)
The instability behaviour of detonation waves are studied using Fickett's model with a 2-step reaction model with separately controlled induction and reaction zones. This model acts as a simplified toy-model to the reactive Euler equations allowing for more clarity of the detonation phenomenon. We numerically simulate a 1D self-supported detonation and investigate the pulsating instability behaviour. We are able to clarify the governing mechanism behind the pulsations through a characteristic analysis describing the coupling that takes place between the amplification of the compressions waves and the alteration to the induction timing. We examine the acceleration phase of the pulsations and determine an analytical solution to describe the strength of the amplification. Fickett's model is as well shown to reproduce the same period doubling bifurcation with increasing sensitivity of the induction rate, and route to chaos as seen in the full reactive Euler equations.
109

On pattern-switching phenomena in complex elastic structures

Willshaw, Stephen Kilgour January 2012 (has links)
We investigate global pattern-switching effects in 2D cellular solids in which the voids are arranged in a square lattice. Uniaxial compression of these structures triggers an elastic instability which brings about a period-doubling transformation of the void shapes at a critical strain. Specifically, a square array of circular voids forms a pattern of mutually orthogonal ellipses and a similar effect is observed for diamond-shaped voids. The onset of instability is governed by the void fraction and size-effects are found for the experimental samples. We establish empirical laws which characterise the stiffness, strength and stability of cellular structures comprising square arrays of circular voids. A comparison of these with predictions from a discrete model implies underestimation of the resistance of the lattice to buckling, although the size effects are replicated. We find similar pattern-switching effects in the cubic lattice, which is a three-dimensional porous cube. The effect of buckling in this system is to produce a 2D pattern in one plane of voids. In two-phase granular crystals, rearrangement of a square lattice of particles results in a new, period-doubled, structural pattern. This switch can occur via an intermediate phase depending on the size ratio of the particles as shown in experiments and numerical simulations.
110

On the role of thermal fluctuations in fluid mixing

Narayanan, Kiran 07 1900 (has links)
Fluid mixing that is induced by hydrodynamic instability is ubiquitous in nature; the material interface between two fluids when perturbed even slightly, changes shape under the influence of hydrodynamic forces, and an additional zone called the mixing layer where the two fluids mix, develops and grows in size. This dissertation reports a study on the role of thermal fluctuations in fluid mixing at the interface separating two perfectly miscible fluids of different densities. Mixing under the influence of two types of instabilities is studied; the Rayleigh-Taylor (RTI) and Richtmyer-Meshkov (RMI) instabilities. The study was conducted using numerical simulations after verification of the simulation methodology. Specifically, fluctuating hydrodynamic simulations were used; the fluctuating compressible Navier-Stokes equations were the physical model of the system, and they were solved using numerical methods that were developed and implemented in-house. Our results indicate that thermal fluctuations can trigger the onset of RTI at an initially unperturbed fluid-fluid interface, which subsequently leads to mixing of multi-mode character. In addition we find that for both RMI and RTI, whether or not thermal fluctuations quantitatively affect the mixing behavior, depends on the magnitude of the dimensionless Boltzmann number of the hydrodynamic system in question, and not solely on its size. When the Boltzmann number is much smaller than unity, the quantitative effect of thermal fluctuations on the mixing behavior is negligible. Under this circumstance, we show that mixing behavior is the average of the outcome from several stochastic instances, with the ensemble of stochastic instances providing the bounds on mixing-related metrics such as the mixing width. Most macroscopic hydrodynamic systems fall in this category. However, when the system is such that the Boltzmann number is of order unity, we show that thermal fluctuations can significantly affect the mixing behavior; the ensemble-averaged solution shows a departure from the deterministic solution. We conclude that for such systems, it is important to account for thermal fluctuations in order to correctly capture their physical behavior.

Page generated in 0.0814 seconds