• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Dynamics of Biomolecules at Interfaces: Insulin-insulin Interactions

KIM, Taeho 10 January 2012 (has links)
Understanding the intermolecular forces and dynamics of insulin self-assembly is crucial for devising formulations for the treatment of insulin-dependent diabetes. Insulin must dissociate from its hexameric storage form, through an intermediate dimer form, to the bioactive monomer before receptor binding. Specifically, the dimer dissociation is a pivotal step to control insulin dynamics and self-assembly. Steered molecular dynamics simulations were performed on native insulin to provide molecular insight into the insulin dissociation force spectroscopy experiment. Our simulation results of force-induced dimer dissociation revealed that the dimer dissociation occurs near the limit of extensibility of the B-chain with significant conformational changes to the monomer(s). These long-range interactions, consistent with our experiments, are due to stronger inter-monomer interactions across the anti-parallel β-sheet interface than any other intra-monomer interaction. Novel atomistic data played an important role in detailed structural characterization of multiple unfolding and dissociation pathways that depend on the relative strength of the inter-monomer interactions and the intra-monomer interactions. Comparative simulations of two rapid-acting insulin analogues (LysB28ProB29, AspB28) to native insulin were performed to investigate the effect of sequence on the dimer dissociation. The hypothesis is that site-specific alterations to the dimer-forming surface of two rapid-acting analogues will result in a weakening of the inter-monomer interactions, which would be reflected during force-induced dimer dissociation. The results revealed that these analogues dissociates with lower probability of long-range interactions and a corresponding reduction in B-chain extension. B-chain extensibility is thus a characteristic marker of inter-monomer interactions and multiple unfolding pathways. These data agree with the design strategies of sequence modifications to the weakened inter-monomer interface applied to the synthesis of rapid-acting insulin analogues. In contrast, the ligand-induced alteration to the strengthened inter-monomer interactions through a specific GluB13s-zinc bridge contributed to the unique unfolding force curves, so it can be applicable as design strategy to the development of a novel long-acting analogue. Overall, our force spectroscopy studies on insulin native and analogues have successfully provided atomistic insights into the dimer dissociation characteristics and control strategies of self-assembly. In addition, this study would provide a framework for the structure-dynamics-function relationships of insulin-insulin receptor binding.
2

Molecular Dynamics of Biomolecules at Interfaces: Insulin-insulin Interactions

KIM, Taeho 10 January 2012 (has links)
Understanding the intermolecular forces and dynamics of insulin self-assembly is crucial for devising formulations for the treatment of insulin-dependent diabetes. Insulin must dissociate from its hexameric storage form, through an intermediate dimer form, to the bioactive monomer before receptor binding. Specifically, the dimer dissociation is a pivotal step to control insulin dynamics and self-assembly. Steered molecular dynamics simulations were performed on native insulin to provide molecular insight into the insulin dissociation force spectroscopy experiment. Our simulation results of force-induced dimer dissociation revealed that the dimer dissociation occurs near the limit of extensibility of the B-chain with significant conformational changes to the monomer(s). These long-range interactions, consistent with our experiments, are due to stronger inter-monomer interactions across the anti-parallel β-sheet interface than any other intra-monomer interaction. Novel atomistic data played an important role in detailed structural characterization of multiple unfolding and dissociation pathways that depend on the relative strength of the inter-monomer interactions and the intra-monomer interactions. Comparative simulations of two rapid-acting insulin analogues (LysB28ProB29, AspB28) to native insulin were performed to investigate the effect of sequence on the dimer dissociation. The hypothesis is that site-specific alterations to the dimer-forming surface of two rapid-acting analogues will result in a weakening of the inter-monomer interactions, which would be reflected during force-induced dimer dissociation. The results revealed that these analogues dissociates with lower probability of long-range interactions and a corresponding reduction in B-chain extension. B-chain extensibility is thus a characteristic marker of inter-monomer interactions and multiple unfolding pathways. These data agree with the design strategies of sequence modifications to the weakened inter-monomer interface applied to the synthesis of rapid-acting insulin analogues. In contrast, the ligand-induced alteration to the strengthened inter-monomer interactions through a specific GluB13s-zinc bridge contributed to the unique unfolding force curves, so it can be applicable as design strategy to the development of a novel long-acting analogue. Overall, our force spectroscopy studies on insulin native and analogues have successfully provided atomistic insights into the dimer dissociation characteristics and control strategies of self-assembly. In addition, this study would provide a framework for the structure-dynamics-function relationships of insulin-insulin receptor binding.

Page generated in 0.1436 seconds