Spelling suggestions: "subject:"insulinlike growth factor"" "subject:"insulinlika growth factor""
21 |
Molecular characterization of insulin-regulated aminopeptidase (IRAP) /Ye, Siying. January 2006 (has links)
Thesis (Ph.D.)--University of Melbourne, Dept. of Biochemistry and Molecular Biology, Howard Florey Institute, 2006. / Typescript. Includes bibliographical references (leaves 188-225).
|
22 |
Functional studies of SCN2B over-expression in LNCaP human prostate cancer cellsLynch, Jill Ellen. January 2008 (has links)
Thesis (M.S.)--University of Delaware, 2007. / Principal faculty advisor: Robert A. Sikes, Dept. of Biological Sciences. Includes bibliographical references.
|
23 |
Insulin-like growth factor I (IGF I) in the red spotted newt, Notophthalmus viridescens: Description of larval limb development ; localization of IGF I in larval and adult newt limbs ; and effects of IGF I on epimorphic regeneration of an adult newt appendage in vitro.Wong, Christine Jaye. January 2004 (has links)
Thesis (Ph. D.)--University of Toronto, 2004. / Includes bibliographical references.
|
24 |
Insulin-like Growth Factor-1, Mechano Growth Factor und Myosin Schwerketten Transformation beim KrafttrainingHeinichen, Markus Gerd, January 2006 (has links)
Ulm, Univ. Diss., 2006.
|
25 |
Einflussfaktoren auf die IGF-1-Konzentrationen in Viertelanfangsgemelkproben von Kühen mit unterschiedlicher Eutergesundheit : eine Feldstudie /Ruffer, Ulrike. January 2003 (has links) (PDF)
Diss. Univ. Giessen, 2003.
|
26 |
Studies to identify and characterise IGF-binding determinants of IGFBP-2Hobba, Graham D. (Graham Dean) January 1999 (has links) (PDF)
Copies of author's previously published articles inserted behind back end-papers. Bibliography: leaves 139-160. Identifies and characterises specific residues of biGFBP-2 that comprises the IGF binding site.
|
27 |
Peripheral Hormone Interactions with the Growth Hormone-Insulin-Like Growth Factor (GH-IGF) System in Rainbow TroutDickey, Lindsey Ann January 2019 (has links)
The growth of vertebrates is primarily regulated by the growth hormone-insulin-like growth factor (GH-IGF) system, but not in isolation. The central question of this dissertation was how do other hormones peripheral to the GH-IGF system interact with the system, including feedbacks by GH and IGF themselves on various tissues in rainbow trout (Oncorhynchus mykiss)? The representative hormones selected were thyroxine, cortisol, and the sex steroids testosterone and estrogen, along with GH and IGF. These hormones were chosen because they are known to affect overall growth and development during specific life events, but exactly what target genes and what mechanisms are involved are only at the early stages of being delineated in fish. Liver and gill tissues were selected as representative tissues to assess the in vitro effects on growth-related genes of the GH-IGF system. A total of more than thirty experiments were conducted, including time- and concentration-response, inhibitory studies, hormone combination studies, and radio-receptor binding assays. Hormones were applied to whole tissue cultures and real-time quantitative-PCR was used to measure hormonal effects on GHR, IGF, and IGFR1 genes. Microsomal preparations were treated with selected hormones and radio-labeled GH or IGF. A gamma counter was used to measure receptor-ligand activity. GH and IGF were found to possess autocrine and/or paracrine actions in self-regulating target growth genes. Thyroxine had no direct effects on targeted growth genes but may interact with other molecules or hormones to elicit its effects on growth and development. Cortisol directly influenced target growth genes in a tissue-specific and isoform-specific manner. Finally, sex steroids differentially regulated the growth genes: estradiol inhibited growth genes while testosterone directly stimulated growth genes. These findings contribute to understanding how hormones peripheral to the GH-IGF system interact with the growth system. / National Science Foundation grant IOS 0920116 to Dr. Mark Sheridan
|
28 |
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) in vivo: investigation via transgenesis in rats / Nicholas Campbell Kallincos.Kallincos, Nicholas Campbell January 1993 (has links)
1 v. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Biochemistry, 1994
|
29 |
IGF transfer from blood to tissue: comparison of IGF-I with analogs that bind poorly to binding proteins, using a vascular perfusion model : a thesis submitted to the University of Adelaide, South Australia, for the degree of Doctor of Philosophy / by Andrew Peter Duncan LordLord, Andrew P.D. (Andrew Peter Duncan) January 1993 (has links)
xxiii, 222 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Insulin-like growth factor-I circulates at high concentrations in blood, mainly complexed with IGF-binding proteins. The main objective of the thesis is to determine the general role played by plasma IGF-binding proteins in the regulation of IGF transfer from blood to tissues. / Thesis (Ph.D.)--University of Adelaide, Dept. of Animal Science, 1994
|
30 |
Regulation of hepatic ALS and IGFBP-1 expressionHepp, Michael Emerson 21 June 2005
The insulin-like growth factor (IGF) system is composed of IGF, IGF binding proteins (IGFBP-1 to -10) and the acid labile subunit (ALS). IGF exists as two isoforms, IGF-I and IGF-II. IGF-I is the major circulatory form and is primarily secreted by the liver. It functions to regulate proliferation and differentiation in a number of different cell types and elicits an insulin-like metabolic effect. As well as being regulated at levels of transcription and translation, IGF-I activities are also regulated through formation of complexes in circulation. IGF complexes form as binary complexes, such as the IGFBP-1 complex, and ternary complexes containing IGF-I, IGFBP-3 and ALS. Binary and ternary IGF complexes function to maintain stable pools of bioactive IGF-I. They also function to increase IGF half-life and sequester IGF in the bloodstream. <p> ALS and IGFBP-1 are well characterized and exist as 85 kDa and 32 kDa proteins, respectively. They are expressed primarily in liver hepatocytes. Circulating ALS binds the IGF-I-IGFBP-3 complex and increases IGF half-life from 10 min in the IGFBP-3 binary complex to 10-15 hr in the ternary complex. IGFBP-1 binds IGF-I and increases the half-life from 10 min to 30 min. The ternary complex is the predominant IGF-I binding protein complex found in circulation. The IGFBP-1 complex represents only a small fraction of circulating IGF complexes. <p> In this thesis ALS and IGFBP-1 regulation were investigated in terms of expression related to metabolic modulators and streptozotocin (STZ)-induced diabetes. Results from rat studies showed a decreased liver ALS gene expression in STZ-induced diabetic rats. STZ-treatment in rats mimics type-I diabetes with no change in secreted insulin with increase of circulatory glucose. The administration of insulin into the STZ-induced diabetic rats brought ALS levels to that of the untreated controls. ALS expression was positively regulated by insulin in H4IIE hepatoma cells. Growth hormone (GH), glucose, dexamethasone also positively regulated ALS gene expression while cAMP (2-b-cAMP) acted as a negative regulator in H4IIE cells. HepG2 cells expressing constitutively active protein kinase B (PKB) (HepG2-PKB-CA) increased ALS gene expression to levels 20% higher then parental HepG2. Insulin treatment of these cells unexpectedly increased ALS levels in both parental and PKB-CA HepG2. This may have indicated a partial regulatory role of the mitogen activated protein (MAP) kinase pathway as PKB was thought to be over-expressed therefore rendering the insulin signal redundant. Inhibition of the phosphoinositol-3 (PI-3) kinase and MAP kinase pathways through wortmannin and PD98059 incubation, respectively, suggested a possible interplay or crosstalk between the two pathways in insulin signaling. PKB is known to be activated through the PI-3 kinase pathway. Results suggested possibility that PKB may interact through the MAP kinase pathway in regulation of ALS gene expression. The activity of cAMP on ALS gene expression may occur through interaction with the PI-3 kinase pathway as inhibition enhanced the negative effect of cAMP on ALS expression. <p> The secretion of IGFBP-1 was positively regulated by glucose and GH and negatively regulated by insulin in H4IIE cells. HepG2-PKB-CA cells showed significantly lower IGFBP-1 secretion as compared to parental HepG2 cells. The involvement of the PI-3 and MAP kinase pathways in the modulator-mediated effect on IGFBP-1 secretion were. As observed for ALS expression, the effect of insulin on IGFBP-1 secretion may also be affected through interplay or crosstalk between the PI-3 kinase and MAP kinase pathways. Glucose and GH effected IGFBP-1 expression and secretion independent of these pathways although glucose expression may interact in some way through the PI-3 kinase pathway. Our investigation of hepatic regulation of IGFBP-1 secretion and ALS gene expression has shown regulatory roles for the metabolic hormones tested, especially insulin. Mechanisms of cell signaling have also been approached with the use of pathway inhibiters and HepG2-PKB-CA cells. Much work is yet to be done to fully understand the effects of insulin and other hormones on the secretion and expression of IGFBP-1 and ALS.
|
Page generated in 0.0906 seconds