1 |
Uma introdução à integral de Riemann contextualizada ao ensino médio /Silva, Daniel Ferreira da January 2019 (has links)
Orientador: Fabiano Borges da Silva / Resumo: Neste trabalho apresentamos a definição da integral de Riemann por meio de somatórios de retângulos que aproximam pela falta e pelo excesso a região sob uma curva definida por uma função. Posteriormente mostramos que as funções contínuas definidas num intervalo fechado e limitado [a, b] são integráveis e fornecemos um exemplo de função não integrável. Finalmente apresentamos o Teorema Fundamental do Cálculo e uma abordagem para a teoria de integração que pode ser aplicada no contexto do Ensino Médio. / Abstract: ln this work we present the definition of the Riemann integral by summing rectangles that approximate the region under a curve defined by a function due to lack and excess. Then we show that continuous functions defined in a closed and limited interval [a, b] are integrable, and after we provide an example of an unintegrable function. Finally we present the Fundamental Calculus Theorem and an approach to integration theory that can be applied in the High School context. / Mestre
|
2 |
Grandes estruturas lineares em conjuntos de funções patológicas / Large linear structures in sets of pathological functionsSouza, Renan Gava de 20 May 2019 (has links)
A busca por grandes estruturas lineares em conjuntos de funções com propriedades pa-tológicas é um tópico que fora desenvolvido nos últimos vinte anos. Esse trabalho detalhaalguns desses resultados sobre lineabilidade e espaçabilidade de forma clara e diluida parafacilitar a introdução desses conceitos para um pesquisador não familiarizado.Veremos que os seguintes conjuntos são lineáveis: funçõesCnão analíticas, funçõescom apenas uma quantidade finita de pontos de continuidade, funções cujas derivadas sãoilimitadas num intervalo fechado, funções sobrejetoras em todo lugar que se anulam quasesempre. Também mostraremos a espaçabilidade dos seguintes conjuntos: funções de variaçãolimitada com um conjunto denso de descontinuidades em salto e funções Lebesgue integráveisem [0,1] não essencialmente limitadas em nenhum intervalo. Finalmente, veremos algunsresultados sobre a lineabilidade no conjunto dos funcionais lineares que atingem a norma. / Finding large linear structures in sets of functions with pathological properties is a topicthat has been developed in the last twenty years. This work details some of these resultsabout lineability and spaceability in a clear and diluted way to make the introduction ofthese concepts easier for an unfamiliar researcher.We show that the following sets are lineable:Cnon-analytic functions, functions witha finite number of points of continuity, functions whose derivative is unbounded on a closedinterval and everywhere surjective functions that are almost everywhere zero. We also showthe spaceability of the following sets: functions of bounded variation which have a denseset of jump discontinuities and Lebesgue integrable functions in [0,1] which are nowhereessentially bounded. At last, we show some results about lineability in the set of linearfunctionals that attain their norm.
|
Page generated in 0.1046 seconds