1 |
A mathematical model of the productivity index of a wellKhalmanova, Dinara Khabilovna 30 September 2004 (has links)
Motivated by the reservoir engineering concept of the productivity index of a producing oil well in an isolated reservoir, we analyze a time dependent functional, diffusive capacity, on the solutions to initial boundary value problems for a parabolic equation. Sufficient conditions providing for time independent diffusive capacity are given for different boundary conditions. The dependence of the constant diffusive capacity on the type of the boundary condition (Dirichlet, Neumann or third-type boundary condition) is investigated using a known variational principle and confirmed numerically for various geometrical settings. An important comparison between two principal constant values of a diffusive capacity is made, leading to the establishment of criteria when the so-called pseudo-steady-state and boundary-dominated productivity indices of a well significantly differ from each other. The third type boundary condition is shown to model the thin skin effect for the constant wellbore pressure production regime for a damaged well. The questions of stabilization and uniqueness of the time independent values of the diffusive capacity are addressed. The derived formulas are used in numerical study of evaluating the productivity index of a well in a general three-dimensional reservoir for a variety of well configurations.
|
2 |
A mathematical model of the productivity index of a wellKhalmanova, Dinara Khabilovna 30 September 2004 (has links)
Motivated by the reservoir engineering concept of the productivity index of a producing oil well in an isolated reservoir, we analyze a time dependent functional, diffusive capacity, on the solutions to initial boundary value problems for a parabolic equation. Sufficient conditions providing for time independent diffusive capacity are given for different boundary conditions. The dependence of the constant diffusive capacity on the type of the boundary condition (Dirichlet, Neumann or third-type boundary condition) is investigated using a known variational principle and confirmed numerically for various geometrical settings. An important comparison between two principal constant values of a diffusive capacity is made, leading to the establishment of criteria when the so-called pseudo-steady-state and boundary-dominated productivity indices of a well significantly differ from each other. The third type boundary condition is shown to model the thin skin effect for the constant wellbore pressure production regime for a damaged well. The questions of stabilization and uniqueness of the time independent values of the diffusive capacity are addressed. The derived formulas are used in numerical study of evaluating the productivity index of a well in a general three-dimensional reservoir for a variety of well configurations.
|
Page generated in 0.1178 seconds