• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integral Closures of Ideals and Coefficient Ideals of Monomial Ideals

Lindsey P Hill (11206302) 30 July 2021 (has links)
<div>The integral closure $\overline{I}$ of an ideal $I$ in a ring $R$ consists of all elements $x \in R$ that are integral over $I$. If $R$ is an algebra over an infinite field $k$, one can define general elements of $I=\left( x_{1},\ldots,x_{n}\right)$ as $x_{\alpha}=\sum_{i=1}^{n}\alpha_{i}x_{i}$ with $(\alpha_{1},\ldots,\alpha_{n})$ belonging to a Zariski-open subset of $k^{n}$. </div><div><br></div><div>We prove that for any ideal $I$ of height at least $2$ in a local, equidimensional excellent algebra over a field of characteristic zero, the integral closure specializes with respect to a general element of $I$. That is, we show that $\overline{I}/(x)=\overline{I/(x)}$. </div><div><br></div><div>In a Noetherian local ring $(R,m)$ of dimension $d$, one has a sequence of ideals approximating the integral closure of $I$ for $I$ an $m$-primary ideal. The ideals </div><div>\[ I \subseteq I_{\{d\}} \subseteq \cdots \subseteq I_{\{1\}} \subseteq I_{\{0\}}=\overline{I}\]</div><div>are the coefficient ideals of $I$. The $i^{\text{th}}$ coefficient ideal $I_{\{i\}}$ of $I$ is the largest ideal containing $I$ and integral over $I$ for which the first $i+1$ Hilbert coefficients of $I$ and $I_{\{i\}}$ coincide. </div><div><br></div><div>With a goal of understanding how coefficient ideals behave under specialization by general elements, we turn to the case of monomial ideals in polynomial rings over a field. A consequence of the specialization of the integral closure is that the $i^{\text{th}}$ coefficient ideal specializes when the $i^{\text{th}}$ coefficient ideal coincides with the integral closure. To this end, we give a formula for first coefficient ideals of $m$-primary monomial ideals generated in one degree in $2$ variables in order to describe when $I_{\{1\}}=\overline{I}$. In the $2$-dimensional case, we characterize the behavior of all coefficient ideals with respect to specialization by general elements. </div><div><br></div><div>In the $d$-dimensional case for $d \geq 3$, we give a characterization of when $I_{\{1\}}=\overline{I}$ for $m$-primary monomial ideals generated in one degree. In the final chapter, we give an application to the core, by characterizing when $\core(I)=\adj(I^{d})$ for such ideals.</div><div><br></div>

Page generated in 0.086 seconds