• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous Occupancy Mapping Using Gaussian Processes / Kontinuerlig kartering med Gaussprocesser

Wågberg, Johan, Walldén Viklund, Emanuel January 2012 (has links)
The topic of this thesis is occupancy mapping for mobile robots, with an emphasis on a novel method for continuous occupancy mapping using Gaussian processes. In the new method, spatial correlation is accounted for in a natural way, and an a priori discretization of the area to be mapped is not necessary as within most other common methods. The main contribution of this thesis is the construction of a Gaussian process library for C++, and the use of this library to implement the continuous occupancy mapping algorithm. The continuous occupancy mapping is evaluated using both simulated and real world experimental data. The main result is that the method, in its current form, is not fit for online operations due to its computational complexity. By using approximations and ad hoc solutions, the method can be run in real time on a mobile robot, though not without losing many of its benefits.
2

Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores / Random normal matrices ensembles: projection, asymptotics behavior and universality of ugenvalues

Veneziani, Alexei Magalhães 12 March 2008 (has links)
Uma matriz `A IND.N´ de ordem N ´e normal se e somente se comuta com sua adjunta. Nesta tese investigamos a estatística dos autovalores (no plano complexo) de ensembles de matrizes aleatórias normais quando a ordem N destas tende a infinito. A função distribuição de probabilidade no espaço das matrizes normais atribui, como na mecânica estatística, um peso de Boltzmann `e POT.-NF(`A IND.N´)´ a cada realização `A IND.N´ destas matrizes, onde F é uma função a valores reais invariante por transformações unitárias. Realizando uma mudança de variáveis (das variáveis de entrada para as variáveis espectrais), escrevemos a distribuição marginal conjunta dos autovalores `{`z IND.i´} POT.N´ `IND.i=1´, bem como a função de n-pontos correspondente a vários ensembles, como o determinante de um núcleo integral associado. A partir deste formalismo bem estabelecido na literatura, apresentaremos nesta tese dois tipos de resultados: Primeiramente, explorando a semelhança da distribuição conjunta dos autovalores a um problema variacional sobre as medidas de equilíbrio eletrostático de cargas sujeitas a um potencial externo V : C ? R (escolhendo F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), podemos aplicar a teoria de potenciais logarítmicos para obter a única medida de equilíbrio coincidente com a função de 1-ponto destes ensembles. Com base nesta teoria, propomos nesta tese um método de interpolação analítica capaz de projetar a medida de equilíbrio dos ensembles normais em medidas de equilíbrio dos ensembles hermitianos e unitários correspondentes. Ilustramos o procedimento com várias aplicações. O segundo tipo de resultados utiliza o método de ponto de sela ao nícleo integral da família de ensembles de matrizes normais com potenciais `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Analogamente ao que foi demonstrado em ensembles hermitianos por Deift, estabelecemos por intermédio desta expansão um conceito similar de universalidade para esta família, fazendo uso de mapas conformes e a teoria de espaços de Segal-Bargmann. Sobre o sentido de universalidade definido por G. Oas, mostramos que a afirmação de universalidade neste sentido por este autor é incorreta quando a cauda desta probabilidade é levada em conta. / A matrix `A IND.N´ of order N is normal if and only if it commutes with its adjoint. In the present thesis we investigate the eigenvalues statistics (in the complex plane) of ensembles of normal random matrices when their order N tends to infinite. The probability distribution function in the space of normal matrices attributes, as in statistical mechanics, a Boltzmann weight `e POT.-NF(`A IND.N´)´ at each matrix realization `A IND.N´, where F is a real-valued function invariant by unitary transformations. By performing a change of variables (from entry variables to spectral variables) we write the marginal joint distribution of eigenvalues {`z IND.i´} POT.N´ `IND.i=1´, as well as the n-points functions corresponding to several ensembles, as the determinant of an associated integral kernel. From this formalism well-established in the literature, we shall present in this thesis two types of results: Firstly, exploiting the similarity of joint distribution of eigenvalues to a variational problem on electrostatic equilibrium measures of charges subjected to an external potential V : C - > R (by choosing F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), we can apply the theory of logarithmic potentials to obtain the unique equilibrium measure coinciding with the 1-point function of these ensembles. Based on this theory, we propose in this thesis a method of analytical interpolation capable of projecting the equilibrium measure of normal ensembles in equilibrium measures of corresponding Hermitian and unitary ensembles. We give several applications of this procedure. The second type of results utilizes the saddle point method applied to integral kernel of a family of normal matrix ensembles with potentials `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Similarly to what has been shown in hermitian ensembles by Deift, we established by mean of this expansion a similar concept of universality for this family, making use of conformal maps and theory of Segal-Bargmann space. Concerning the universality defined by G. Oas, we show that the universality claimed by this author is incorrect when the tail of this probability is taking into account.
3

Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores / Random normal matrices ensembles: projection, asymptotics behavior and universality of ugenvalues

Alexei Magalhães Veneziani 12 March 2008 (has links)
Uma matriz `A IND.N´ de ordem N ´e normal se e somente se comuta com sua adjunta. Nesta tese investigamos a estatística dos autovalores (no plano complexo) de ensembles de matrizes aleatórias normais quando a ordem N destas tende a infinito. A função distribuição de probabilidade no espaço das matrizes normais atribui, como na mecânica estatística, um peso de Boltzmann `e POT.-NF(`A IND.N´)´ a cada realização `A IND.N´ destas matrizes, onde F é uma função a valores reais invariante por transformações unitárias. Realizando uma mudança de variáveis (das variáveis de entrada para as variáveis espectrais), escrevemos a distribuição marginal conjunta dos autovalores `{`z IND.i´} POT.N´ `IND.i=1´, bem como a função de n-pontos correspondente a vários ensembles, como o determinante de um núcleo integral associado. A partir deste formalismo bem estabelecido na literatura, apresentaremos nesta tese dois tipos de resultados: Primeiramente, explorando a semelhança da distribuição conjunta dos autovalores a um problema variacional sobre as medidas de equilíbrio eletrostático de cargas sujeitas a um potencial externo V : C ? R (escolhendo F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), podemos aplicar a teoria de potenciais logarítmicos para obter a única medida de equilíbrio coincidente com a função de 1-ponto destes ensembles. Com base nesta teoria, propomos nesta tese um método de interpolação analítica capaz de projetar a medida de equilíbrio dos ensembles normais em medidas de equilíbrio dos ensembles hermitianos e unitários correspondentes. Ilustramos o procedimento com várias aplicações. O segundo tipo de resultados utiliza o método de ponto de sela ao nícleo integral da família de ensembles de matrizes normais com potenciais `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Analogamente ao que foi demonstrado em ensembles hermitianos por Deift, estabelecemos por intermédio desta expansão um conceito similar de universalidade para esta família, fazendo uso de mapas conformes e a teoria de espaços de Segal-Bargmann. Sobre o sentido de universalidade definido por G. Oas, mostramos que a afirmação de universalidade neste sentido por este autor é incorreta quando a cauda desta probabilidade é levada em conta. / A matrix `A IND.N´ of order N is normal if and only if it commutes with its adjoint. In the present thesis we investigate the eigenvalues statistics (in the complex plane) of ensembles of normal random matrices when their order N tends to infinite. The probability distribution function in the space of normal matrices attributes, as in statistical mechanics, a Boltzmann weight `e POT.-NF(`A IND.N´)´ at each matrix realization `A IND.N´, where F is a real-valued function invariant by unitary transformations. By performing a change of variables (from entry variables to spectral variables) we write the marginal joint distribution of eigenvalues {`z IND.i´} POT.N´ `IND.i=1´, as well as the n-points functions corresponding to several ensembles, as the determinant of an associated integral kernel. From this formalism well-established in the literature, we shall present in this thesis two types of results: Firstly, exploiting the similarity of joint distribution of eigenvalues to a variational problem on electrostatic equilibrium measures of charges subjected to an external potential V : C - > R (by choosing F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), we can apply the theory of logarithmic potentials to obtain the unique equilibrium measure coinciding with the 1-point function of these ensembles. Based on this theory, we propose in this thesis a method of analytical interpolation capable of projecting the equilibrium measure of normal ensembles in equilibrium measures of corresponding Hermitian and unitary ensembles. We give several applications of this procedure. The second type of results utilizes the saddle point method applied to integral kernel of a family of normal matrix ensembles with potentials `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Similarly to what has been shown in hermitian ensembles by Deift, we established by mean of this expansion a similar concept of universality for this family, making use of conformal maps and theory of Segal-Bargmann space. Concerning the universality defined by G. Oas, we show that the universality claimed by this author is incorrect when the tail of this probability is taking into account.

Page generated in 0.0639 seconds