• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Precision single mode fibre integral field spectroscopy with the RHEA spectrograph

Rains, Adam D., Ireland, Michael J., Jovanovic, Nemanja, Feger, Tobias, Bento, Joao, Schwab, Christian, Coutts, David W., Guyon, Olivier, Arriola, Alexander, Gross, Simon 09 August 2016 (has links)
The RHEA Spectrograph is a single-mode echelle spectrograph designed to be a replicable and cost effective method of undertaking precision radial velocity measurements. Two versions of RHEA currently exist, one located at the Australian National University in Canberra, Australia (450 - 600nm wavelength range), and another located at the Subaru Telescope in Hawaii, USA (600 - 800 nm wavelength range). Both instruments have a novel fibre feed consisting of an integral field unit injecting light into a 2D grid of single mode fibres. This grid of fibres is then reformatted into a 1D array at the input of the spectrograph (consisting of the science fibres and a reference fibre capable of receiving a white-light or xenon reference source for simultaneous calibration). The use of single mode fibres frees RHEA from the issue of modal noise and significantly reduces the size of the optics used. In addition to increasing the overall light throughput of the system, the integral field unit allows for cutting edge science goals to be achieved when operating behind the 8.2 m Subaru Telescope and the SCExAO adaptive optics system. These include, but are not limited to: resolved stellar photospheres; resolved protoplanetary disk structures; resolved Mira shocks, dust and winds; and sub-arcsecond companions. We present details and results of early tests of RHEA Subaru and progress towards the stated science goals.
2

The evolution of early-type galaxies

Prichard, Laura Jane January 2018 (has links)
Early-type galaxies (ETGs) are typically thought of as 'red and dead' with little to no star formation and old stellar populations. Their detailed kinematics measured locally suggest an interesting array of formation mechanisms and high-redshift observations are starting to reveal a two-phase evolutionary path for the most massive galaxies. In this thesis, I take a combined approach to studying the formation of ETGs. I look to distant quiescent galaxies in one of the densest regions of the early Universe and at the fossil record of a local galaxy to shed light on some of the unsolved mysteries of how ETGs evolved. Using the unique multiplexed instrument, the K-band Multi-Object Spectrograph (KMOS), the evolution of galaxies at both low and high redshift were studied as part of this thesis. I maximised the capabilities of this multi-integral field unit (IFU) near-infrared (NIR) instrument to study different aspects of ETG evolution. With 24 separate IFUs, many quiescent galaxies were efficiently observed in a massive high-redshift cluster as part of the KMOS Cluster Survey. Coupling KMOS spectroscopy with Hubble Space Telescope photometry, I studied the ages, kinematics, and structural properties of the galaxies. I then analysed the detailed properties of a massive local ETG with interesting kinematics, IC 1459. Coupling the NIR IFU data from KMOS with a large mosaic of optical data from the Multi-Unit Spectroscopic Explorer, I was able to study the spatially resolved kinematics, stellar populations, and initial mass function of the galaxy. The work presented in this thesis provides some interesting clues as to the formation of ETGs and possible diversity of their evolutionary paths.

Page generated in 0.0927 seconds