1 |
Intégrale, Longueur, aire /Lebesgue, Henri Léon, January 1902 (has links)
Thesis--Université de Paris, 1902. / Bibliographical foot-notes.
|
2 |
Die Hamilton-Jacobische Theorie für Doppelintegrale mit einer Übersicht der Theorie für einfache Integrale /Prange, Georg, January 1915 (has links)
Thesis (doctoral)--Georg-August-Universität zu Göttingen, 1914. / Cover title. Vita. Includes bibliographical references.
|
3 |
ON THE COMPATIBILITY OF INTEGRALSSandberg, Rollin Theodore, 1933- January 1964 (has links)
No description available.
|
4 |
Weak extensions of operators with emphasis on integralsBuckley, James Joseph 08 1900 (has links)
No description available.
|
5 |
Bestimmung der coefficienten, welche bei der Berechnung der integrale [integral sign]xn̳dx/[square root of the quantity]1+ax+bx² und [integral sign]xn̳dx/[square root of the quantity]1+ax+bx²+cx³ auftreten ...Benner, Henry, January 1899 (has links)
Inaug.-diss.--Erlangen. Lebenslaluf. / In both equations in the title, n̳ is superscript.
|
6 |
Bestimmung der coefficienten, welche bei der Berechnung der integrale [integral sign]xn̳dx/[square root of the quantity]1+ax+bx² und [integral sign]xn̳dx/[square root of the quantity]1+ax+bx²+cx³ auftreten ...Benner, Henry, January 1899 (has links)
Inaug.-diss.--Erlangen. Lebenslaluf. / In both equations in the title, n̳ is superscript.
|
7 |
Essai sur une théorie générale de l'intégration et sur la classification des transcendantesDrach, Jules, January 1898 (has links)
Thesis--Faculté des sciences de Paris, 1898.
|
8 |
An integral of the Perron typeMcGregor, James Lewin January 1951 (has links)
In the definition of the Perron integral of a function f (x) over a closed interval [a, b] a major function M(x) and a minor function m(x) are required to satisfy the conditions (i) M(x) and m(x) are continuous on [a, b] and M(a) = m(a) = 0 ; (ii) - ∞ ≠ Ḏ M(x) ≥ f (x) ≥ D [overscored] m(x) ≠ + ∞. It is shown that without restricting the generality of the integral one may impose the additional condition (iii) M(x) and m(x) are differentiable on [a, b]. / Science, Faculty of / Mathematics, Department of / Graduate
|
9 |
The determination of sets of integral elements for certain rational division algebrasWebber, G. Cuthbert January 1932 (has links)
No abstract included. / Science, Faculty of / Mathematics, Department of / Graduate
|
10 |
The Mean IntegralSpear, Donald W. 12 1900 (has links)
The purpose of this paper is to examine properties of the mean integral. The mean integral is compared with the regular integral. If [a;b] is an interval, f is quasicontinuous on [a;b] and g has bounded variation on [a;b], then the man integral of f with respect to g exists on [a;b]. The following theorem is proved. If [a*;b*] and [a;b] each is an interval and h is a function from [a*;b*] into R, then the following two statements are equivalent: 1) If f is a function from [a;b] into [a*;b*], gi is a function from [a;b] into R with bounded variation and (m)∫^b_afdg exists then (m)∫^b_ah(f)dg exists. 2) h is continuous.
|
Page generated in 0.0669 seconds