1 |
Integrative Bioassessment of Acid Mine Drainage Impacts on the Upper Powell River Watershed, Southwestern VirginiaSoucek, David J. 29 May 2001 (has links)
Acid mine drainage (AMD), a result of oxidation of minerals containing reduced forms of sulfur (pyrites, sulfides) upon exposure to water and oxygen, is an environmental problem associated with abandoned mined lands (AML). Numerous studies have documented the impacts of AMD upon aquatic communities within acidified stream reaches; these impacts include reduced taxonomic richness and abundance, and/or a shift from pollution sensitive to pollution tolerant species. This dissertation comprises a number of integrative assessments and experiments conducted to investigate the nature of AMD ecotoxicity in the upper Powell River watershed. Emphasis was placed upon bioassessment methodologies and AMD impacts beyond the zone of pH depression. Major findings and processes developed included: 1) an Ecotoxicological Rating (ETR) system was developed that integrates chemical, toxicological, and ecological data into a single value depicting the relative environmental integrity of a given station within a watershed; 2) water column chemistry rather than sediment toxicity was the major factor causing acute toxicity to aquatic biota in close proximity to AMD discharges; 3) solid ferric hydroxide can cause acute toxicity to standard test organisms in the absence of dissolved iron; 4) Asian clams (Corbicula fluminea) can be used to detect both acutely toxic AMD inputs and nutrient loading in low order streams, and clam responses of survival and growth reflect those of indigenous communities to the two contaminant types; 5) aluminum (Al) in transition from acidic to neutral pH waters can cause acute toxicity to aquatic invertebrates, and may be the cause of impaired benthic macroinvertebrate communities in neutral pH (>7.0) waters downstream of an acidic tributary; 6) in the larger river system (North Fork Powell and Powell mainstem), urban inputs appear to have a greater influence upon aquatic communities than metal loading from AMD impacted tributaries; 7) the use of individual level assessment endpoints, such as Asian clam growth in in situ toxicity tests, eliminates variables that may confound attribution of community level impacts to contaminants; and 8) the near elimination of predatory stoneflies (Plecoptera) downstream of the Stone/Straight Creek tributary to the North Fork Powell River was associated with water column Al concentrations.
This research was funded by the Virginia Department of Mines, Minerals, and Energy, Division of Mined Land Reclamation, and by the Powell River Project. / Ph. D.
|
2 |
Development and Implementation of Integrative Bioassessment Techniques to Delineate Small Order Acid Mine Drainage Impacted Streams of the North Fork Powell River, Southwestern VirginiaSchmidt, Travis Scott 19 October 2001 (has links)
Acid mine drainage (AMD) results from the oxidation of pyretic mineralogy, exposed by mining operations to oxygen and water. This reaction produces sulfuric acid and liberates heavy metals from the surrounding mineralogy and impairs water quality and freshwater communities. The U.S. Army Corps of Engineers has begun an ecosystem restoration project to remediate the abandoned mine land (AML) impacts to the North Fork Powell River (NFP) and is utilizing the ecotoxicological rating (ETR) system to delineate these affects to focus restoration efforts. The ETR was developed to summarize the integrative data into a single number ranging from 0 to 100, which is descriptive of the environmental integrity of a sampling station. The ETR is conceptualized to work as an academic grading scale (0 through 100), rating reference stations with A's (90-100) and B's (80-89) and impacted stations with C's (70-80), D's (60-70) and failures (F = 60). Two rounds of ETR investigations have evaluated seven headwater tributaries to the NFP including investigations of Ely and Puckett's Creek from 1997 and 1998. This thesis contains the results of the second series of ETR investigations at 41 stations in Cox Creek, Jone's Creek, Reed's Creek, Summers Fork, Straight Creek, and areas in the NFP. Eight stations were recommended for reclamation; CC 03, JCRF2 02, JCRF2 01, RCPS 09B, RCPS 11B, SULF 01, SU 02, and SU 01. Summers Fork was the most severely impacted watershed of the second round of ETR investigations. An effort to streamline the ETR to the most ecologically predictive parameters was successful in creating a system more time and cost efficient then the initial ETRs and exclusive of benthic macroinvertebrate surveys. The Modified ETR streamlined the ETR to just 5 parameters including; mean conductivity, mean Asian clam survival, mean aluminum (Al) and manganese (Mn) in the water column, and mean habitat score to describe the AMD impacts to small headwater streams. Also, an investigation was conducted to determine the mode of toxicity, (i.e., exposures to metal contaminated surface waters or sediments) by which Al and iron (Fe) dominated AMD impairs benthic macroinvertebrate communities. It was found that water column exposures both within and beyond the zone of pH depression are the most likely mode by which AMD impairs the benthic macroinvertebrate communities of the NFP. / Master of Science
|
Page generated in 0.1114 seconds