• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 39
  • 21
  • 11
  • 8
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 270
  • 93
  • 74
  • 40
  • 38
  • 37
  • 37
  • 32
  • 27
  • 24
  • 22
  • 22
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Β1 Integrins Modulate β-Adrenergic Receptor-Stimulated Cardiac Myocyte Apoptosis and Myocardial Remodeling

Krishnamurthy, Prasanna, Subramanian, Venkateswaran, Singh, Mahipal, Singh, Krishna 01 April 2007 (has links)
Sympathetic nerve activity increases in the heart during cardiac failure. Here, we hypothesized that β1 integrins play a protective role in chronic β-adrenergic receptor-stimulated cardiac myocyte apoptosis and heart failure. l-isoproterenol (iso; 400 μg/kg per hour) was infused in a group of wild-type (WT) and β1 integrin heterozygous knockout (hKO) mice. Left ventricular structural and functional remodeling was studied at 7 and 28 days of iso-infusion. Western blot analysis demonstrated reduced β1 integrin levels in the myocardium of hKO-sham. Iso-infusion increased heart weight:body weight ratios in both groups. However, the increase was significantly higher in WT-iso. M-mode echocardiography indicated increased left ventricular end-diastolic diameter, percentage of fractional shortening, and ejection fraction in the WT-iso group. The percentage of fractional shortening and ejection fraction were significantly lower in hKO-iso versus hKO-sham and WT-iso. Peak left ventricular developed pressure and left ventricular end-diastolic pressure measured using Langendorff-perfusion analyses were significantly higher in the WT-iso group (P<0.05 versus WT-sham and hKO-Iso). The number of TUNEL-positive myocytes was significantly higher in hKO-iso hearts 7 and 28 days after iso-infusion. The increase in myocyte cross-sectional area and fibrosis was higher in the WT-iso group. Matrix metalloproteinase-9 protein levels were significantly higher in WT-iso, whereas matrix metalloproteinase-2 levels were increased in hKO-iso hearts. Iso-infusion increased phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 in both groups. The increase in c-Jun N-terminal kinase phosphorylation was significantly higher in hKO-iso (P<0.001 versus WT-iso). Thus, β1 integrins play a crucial role in β-adrenergic receptor-stimulated myocardial remodeling with effects on cardiac myocyte hypertrophy, apoptosis, and left ventricular function.
192

The Distinct Expressions of Integrins αDβ2 and αMβ2 Differently Regulate Macrophage Migration in 3D Matrix in vitro and in Tissue during Inflammation

Cui, Kui 01 August 2019 (has links)
Chronic inflammation is an essential mechanism during the development of cardiovascular and metabolic diseases. The outcome of diseases depends on the balance between the migration and accumulation of macrophages in damaged tissues. Macrophage motility is highly regulated by adhesive receptors, integrins. Namely, intermediate expression of integrin supports macrophage migration, while a high integrin density inhibits it. Our studies are focused on evaluation of the contribution of related integrins αDβ2 and αMβ2 to macrophage migration and development of chronic inflammation. We found that integrin αDβ2 is upregulated on M1-macrophages in vitro and pro-inflammatory macrophages in atherosclerotic lesions. Interestingly, the expression of ligand-sharing integrin αMβ2 remains unaltered. Using in vitro three-dimensional migration and in vivo tracking of adoptively-transferred fluorescently-labeled macrophages during the resolution of inflammation, we found that robust adhesion of M1-activated macrophages translates to weak 3D migration, which depends on the high expression of αDβ2, since αD-deficiency decreases M1-macrophage adhesion and improves macrophage migration. In contrast, αD- and αM-knockouts decrease M2-macrophages migration, demonstrating that moderate integrin expression supports cell motility. In model of high fat diet-induced diabetes, αD-deficiency prevents the retention of inflammatory macrophages in adipose tissue and improves metabolic parameters, while αM-deficiency does not affect macrophage accumulation. We detected a new ligand for integrins αMβ2 and αDβ2, 2-(ω-carboxyethyl)pyrrole (CEP). CEP is preferentially generated during inflammation-mediated oxidation and forms adduct with ECM proteins generating novel substrate for αMβ2 and αDβ2. Targeting CEP-dependent macrophage adhesion can be a useful approach to control αDβ2-mediated chronic inflammation. Using specially designed peptide library, protein-protein interaction and adhesion assay, we identified a peptide, called P5, which significantly inhibited αD-CEP binding. P5 peptide regulates macrophage migration in three-dimensional matrix in vitro and reduced macrophage accumulation during thioglycollate-induced peritoneal inflammation. Effect of P5 is completely eliminated in αD-deficient macrophages. Tracking of adoptively-transferred fluorescently-labeled WT and αD-/- monocytes in diabetic mice confirmed that αD-dependent inhibition of macrophage accumulation in adipose tissue is mediated by P5 peptide. Taken together, these results demonstrate the importance of αDβ2 and αDβ2-CEP interaction for the accumulation of infiltrating macrophages during inflammation and propose P5 peptide as a potential inhibitor of atherogenesis and diabetes.
193

Characterization of the Involvement of Integrins, Focal Adhesion Kinase, and Phospholipase C Enzymes Endogenous to the Oocyte in Bovine Fertilization and Oocyte Activation

Sessions, Benjamin Rand 01 August 2012 (has links)
The objectives of this research were to better characterize the protein signaling complexes that form in response to spermatozoa binding to the bovine oocyte vitelline membrane and to elucidate their potential involvement in oocyte activation. Integrins located on the vitelline membrane of bovine oocytes have been implicated in mediating the sperm-oocyte interaction. Anti-integrin function blocking antibodies and immunofluorescence were utilized in order to reveal that the αV and β1 integrin subunits are essential for fertilization in the bovine and could form the integrin heterodimer involved in the sperm-oocyte interaction. Focal adhesion kinase is localized to focal adhesions and is a key component of signal transduction pathways mediated by integrins. The presence of focal adhesion kinase in bovine oocytes was verified by real-time polymerase chain reaction and immunoprecipitation and the localization of focal adhesion kinase at the site of sperm binding to the oocyte plasma membrane was verified using immunohistochemistry. The inhibition of focal adhesion kinase resulted in fewer cleaved embryos in addition to a reduction in the number of oocytes responding with calcium transients. Phospholipase C isoforms regulate the release of calcium from the endoplasmic reticulum and are known to interact with integrins and focal adhesion kinase. The experiments reported in this dissertation explored the involvement of phospholipase C isoforms endogenous to the oocyte in mediating the calcium release associated with fertilization. Reduction in phospholipase C messenger ribonucleic acid levels for the phospholipase C isoforms γ1 and γ2 resulted in significantly lower cleavage rates compared to the controls. Interestingly, the reduction in messenger ribonucleic acid levels for phospholipase ζ failed to impact cleavage. Maximizing protein levels for the phospholipase C isoforms ζ and γ2 resulted in a significantly higher number of oocytes reaching the 2-cell stage compared to all other treatment groups and not significantly different than the activation control. Together these data illustrate the involvement of the αV and β1 integrin subunits, focal adhesion kinase, and the potential involvement of multiple endogenous phospholipase C isoforms (γ1 and γ2) in bovine oocyte activation. A more complete understanding of the molecular players involved in fertilization could have beneficial impacts for human fertility, assisted reproduction, and improved efficiency of animal somatic cell nuclear transfer.
194

Mapping The Binding Site Within Integrin D2 for Carboxyethylpyrrole (CEP)-Modified Proteins

Prema, Afia 01 August 2023 (has links) (PDF)
Neutrophils and macrophages accumulate at sites of inflammation and cause chronic inflammation leading to various diseases. Therefore, to better understand chronic disease pathways it is important to investigate the properties of macrophage accumulation in inflamed tissues. The I-domain of the macrophage receptor integrin aDb2 plays a vital role in macrophage retention by binding to CEP (carboxyethyl pyrrole), a ligand available at inflammatory sites. This thesis mainly focuses on evaluating the binding site within integrin aDb2 that binds carboxyethyl pyrrole (CEP)-modified proteins. So, a recombinant plasmid construct containing the integrin I-domain was developed. Seven non-conserved amino acids were mutated by PCR-site-directed mutagenesis to create a mutant construct. After expressing in E. coli, the binding affinities of wild-type and mutant I-domains to CEP were analyzed using biolayer interferometry. It was found that a patch of seven positively charged amino acids contributes to the strong binding of the I domain to CEP.
195

Microsporidian Spores and the Integrin Binding Loop of the MADAM Protein Are Important for Integrin Signaling and Attachment to Host Cells

Barrett, Cindy L 01 August 2023 (has links) (PDF)
Microsporidia are a distant fungal pathogen that have severe clinical consequences for the immunocompromised. Previous work identified a microsporidian pathogen protein termed Microsporidian ADAM or MADAM. This protein has close sequence homology to other ADAM proteins (A Disintegrin and Metalloproteinase) in two microsporidian species, Encephalitozoon intestinalis and E. cuniculi. ADAM proteins have a wide range of functions, including binding to integrins and host signaling. It is known that many pathogens manipulate integrins to invade host cells, and it is predicted that microsporidia are also exploiting this host target. Previous work with the MADAM protein demonstrated that this protein has a role in adherence to host cells. Separate work showed integrin inhibitors can also decrease spore adherence to cells. Experiments in this project complement previous research and further characterize the binding of microsporidia to host integrins and the intracellular consequences of that binding. This work found the integrin binding sequence of MADAM (MADAM peptide) is important for spore binding to host cells. Separate work shows that the host β1 integrin is also involved in spore adherence. Additional work demonstrated that spores and the MADAM peptide elicited an increase in host integrin signaling in Western blotting experiments. And finally, preliminary acellular interferometry experiments suggest the MADAM protein binds specifically to α5β1 and α6β4 integrins. Together, these results suggest microsporidia spores rely, in part, on host integrins to bind to host cells before infection.
196

Fibronectin-mediated interactions of Staphylococcus aureus with human cells

Issa, Joseph January 2021 (has links)
Bacteria typically adhere to various cell surfaces present in the human body to colonise or invade human tissues. Staphylococcus aureus (S. aureus) can express the fibronectin-binding proteins A and B (FnBP-A, FnBP-B) that can facilitate the binding of multiple copies of fibronectin (Fn). In addition, Fn bound to the bacterium trigger activation of α5β1 integrins found on the cells and facilitate invasion of human cells. Although the invasion mechanisms regarding signalling pathways and overall host cell interactions have been defined, the quantitative relationship between the mediators of invasion and the temporal kinetics has not yet been elucidated. In this thesis, newly developed microscopy-based methods have been used to quantify the interactions between H1299 cells and S. aureus at various Fn concentrations. After an approximate Fn concentration of 15 μg/ml, the S. aureus bacteria strains become saturated both for the wildtype and the negative control strains. Additionally, using the step-by-step protocol developed during this study, adhesion of the wildtype strain of S. aureus with 15 μg/ml Fn is occurring on the H1299 cells. Although adjustments to the protocol are needed, this adhesion mechanism will lead to an internalisation of the S. aureus strains to the H1299 cells.
197

Comparative characteristics of integrin αDβ2 binding to native fibrinogen and fibrinogen modified by DHA oxidation during inflammation

Ilesanmi, Ajibola O 25 April 2023 (has links)
2-ω-carboxyethylpyrrole (CEP) is a product of Docosahexaenoic acid (DHA) oxidation, which forms covalent adducts with different proteins. CEP-modified proteins can interact with macrophage receptor, integrin αDβ2. This study aims to compare αDβ2 binding to its physiological ligand, fibrinogen, and CEP-modified fibrinogen, which is formed during inflammation. We hypothesize that modification of fibrinogen changes its ligand-binding properties to integrin αDβ2 which can affect macrophage migration and retention. Recombinant αD I-domain and αDβ2-transfected HEK293 cells were used for the experiments. In biolayer interferometry (BLI) assays, fibrinogen was immobilized at pH 5.0 and fibrinogen-CEP at pH 3.5. Our results showed that the affinity of αD I-domain binding to fibrinogen-CEP was higher than fibrinogen, and the binding was inhibited by the anti-CEP antibody. The optimal expression of αD I-domain was found at 25°C. In cell adhesion assays, optimal concentrations were used for the inhibition assay; fibrinogen at 2µg/ml and fibrinogen-CEP at 8µg/ml. αDβ2-transfected cells demonstrated stronger adhesion to fibrinogen-CEP, and this adhesion was significantly inhibited by polyglutamic acid, which mimics CEP-mediated binding. These findings suggest that αDβ2's interaction with DHA-modified extracellular matrix (ECM) proteins significantly increases macrophage adhesion and may serve for macrophage retention during chronic inflammation. Developing small molecules that can inhibit αDβ2-CEP interaction could be a breakthrough in treating inflammatory diseases. The main conclusions drawn from the study are that CEP-modified fibrinogen has a higher affinity for αD I-domain binding than native fibrinogen, and this interaction can be inhibited by targeting CEP. The study provides insights into the potential therapeutic applications of inhibiting αDβ2-CEP interactions in inflammatory diseases.
198

An immunohistopathological and functional investigation of β3 integrin antagonism as a therapeutic strategy in cancer. Characterisation, development, and utilisation of preclinical cancer models to investigate novel ¿3 integrin anatgonists.

Alshammari, Fatemah O.F.O. January 2013 (has links)
Tumour cell dissemination is a major issue with the treatment of cancer, thus new therapeutic strategies which can control this process are needed. Antagonism of integrins highly expressed in tumours is one potential strategy. The integrins are transmembrane glycoprotein adhesive receptors. Two of the integrins, αVβ3 and αIIbβ3, are highly expressed in a number of tumours and induce bi-directional signalling through their interaction with extracellular matrix proteins, and growth factor receptors. Through this signalling they play an important role in a number of cellular processes that are involved in tumour dissemination such as tumour growth, migration, invasion, metastasis and angiogenesis. Dual αIIbβ3 and αVβ3 integrin antagonism will have a direct effect on β3-expressing tumour cells that leads to the inhibition of cell migration and dissemination. Furthermore, through targeting tumour cell interaction with endothelial cells and platelets, this will also lead to inhibition of angiogenesis and metastasis. The aim of this project was to characterise the expression of αVβ3 and αIIbβ3 integrin in a panel of tumour cell lines and in human tumour xenograft samples, and to develop and utilise cell-based models to investigate potential novel β3 antagonists. The expression of αV and β3 subunits was detected in xenograft tissue using immunoblotting techniques. A panel of cell lines of different tumour types including melanoma, prostate, breast, colon and non small cell lung carcinoma was then characterised for αVβ3 and αIIbβ3 integrin expression using immunoblotting and immunocytochemistry. Melanoma cell lines demonstrated the strongest αVβ3 expression. No αIIbβ3 integrin expression was seen in any of the cell lines evaluated. A selection of cell lines with varying αVβ3 expression were then used to develop a functional test for cell migration, the scratch wound healing assay. Migration of tumour cells that expressed αVβ3 integrin was inhibited by the known β3 antagonists, cRGDfV peptide and LM609 antibody. A panel of 12 potential novel β3 integrin antagonists was screened for cytotoxicity and activity in the validated scratch assay. ICT9055 was the most effective antagonist in inhibition of M14 cell migration as determined by the scratch assay, with an IC50 of < 0.1 µM. Therefore the work presented in this thesis has established models and tools for evaluating potential novel β3 integrin antagonists, and identified a promising molecule to progress for further preclinical evaluation. / Public Authority for Applied Education and Training (PAAET)
199

Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells

Burgett, Monica E. 27 June 2016 (has links)
No description available.
200

Preliminary Steps to Isolate a Novel Receptor for Mac-1

Zou, Xiaoyan 12 December 2003 (has links)
No description available.

Page generated in 0.1008 seconds