Spelling suggestions: "subject:"intellectibus"" "subject:"integralibus""
1 |
IntelliBusRosenbauer, Tom, Cook, Paul 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / The IntelliBus network protocol provides an enabling technology for the next generation data acquisition system. IntelliBus provides greater data acquisition efficiency and reliability compared to other network protocols. This paper discusses the design considerations and implementation of a next generation Data Acquisition System incorporating IntelliBus with emphasis on the advantages of the new architecture over existing acquisition systems.
|
2 |
Integration of Smart Sensor Buses into Distributed Data Acquisition SystemsDehmelt, Chris 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / As requirements for the amount of test data continues to increase, instrumentation engineers are under pressure to deploy data acquisition systems that reduce the amount of associated wiring and overall system complexity. Smart sensor buses have been long considered as one approach to address this issue by placing the appropriate signal conditioners close to their respective sensors and providing data back over a common bus. However, the inability to adequately synchronize the operation of the sensor bus to the system master, which is required to correlate analog data measurements, has precluded their use. The ongoing development and deployment of smart sensor buses has reached the phase in which integration into a larger data acquisition system environment must be considered. Smart sensor buses, such as IntelliBus™, have their own unique mode of operation based on a pre-determined sampling schedule, which however, is typically asynchronous to the operation of the (master or controller) data acquisition system and must be accounted for when attempting to synchronize the two systems. IRIG Chapter 4 type methods for inserting data into a format, as exemplified by the handling of MIL-STD-1553 data, could be employed, with the disadvantage of eliminating any knowledge as to when a particular measurement was sampled, unless it is time stamped (similar to the time stamping function that is provided to mark receipt of 1553 command words). This can result in excessive time data as each sensor bus can manage a large number of analog sensor inputs and multiple sensor buses must be accommodated by the data acquisition system. The paper provides an example, using the Boeing developed IntelliBus system and the L3 Communications - Telemetry East NetDAS system, of how correlated data can be acquired from a smart sensor bus as a major subsystem component of a larger integrated data acquisition system. The focus will be specifically on how the IntelliBus schedule can be synchronized to that of the NetDAS formatter. Sample formats will be provided along with a description of how a standalone NetDAS stack and an integrated NetDAS-IntelliBus system would be programmed to create the required output, taking into account the unique sampling characteristics of the sensor bus.
|
3 |
LONG TERM VEHICLE HEALTH MONITORINGCridland, Doug, Dehmelt, Chris 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / While any vehicle that is typically part of a flight test campaign is heavily instrumented to validate its performance, long term vehicle health monitoring is performed by a significantly reduced number of sensors due to a number of issues including cost, weight and maintainability. The development and deployment of smart sensor buses has reached a time in which they can be integrated into a larger data acquisition system environment. The benefits of these types of buses include a significant reduction in the amount of wiring and overall system complexity by placing the appropriate signal conditioners close to their respective sensors and providing data back over a common bus, that also provides a single power source. The use of a smart-sensor data collection bus, such as IntelliBus™1 or IEEE-1451, along with the continued miniaturization of signal conditioning devices, leads to the interesting possibility of permanently embedding data collection capabilities within a vehicle after the initial flight test effort has completed, providing long-term health-monitoring and diagnostic functionality that is not available today. This paper will discuss the system considerations and the benefits of a smart sensor based system and how pieces can be transitioned from flight qualification to long-term vehicle health monitoring in production vehicles.
|
Page generated in 0.0542 seconds