1 |
A study into scalable transport networks for IoT deploymentSizamo, Yandisa 14 March 2022 (has links)
The growth of the internet towards the Internet of Things (IoT) has impacted the way we live. Intelligent (smart) devices which can act autonomously has resulted in new applications for example industrial automation, smart healthcare systems, autonomous transportation to name just a few. These applications have dramatically improved the way we live as citizens. While the internet is continuing to grow at an unprecedented rate, this has also been coupled with the growing demands for new services e.g. machine-to machine (M2M) communications, smart metering etc. Transmission Control Protocol/Internet Protocol (TCP/IP) architecture was developed decades ago and was not prepared nor designed to meet these exponential demands. This has led to the complexity of the internet coupled with its inflexible and a rigid state. The challenges of reliability, scalability, interoperability, inflexibility and vendor lock-in amongst the many challenges still remain a concern over the existing (traditional) networks. In this study, an evolutionary approach into implementing a "Scalable IoT Data Transmission Network" (S-IoT-N) is proposed while leveraging on existing transport networks. Most Importantly, the proposed evolutionary approach attempts to address the above challenges by using open (existing) standards and by leveraging on the (traditional/existing) transport networks. The Proof-of-Concept (PoC) of the proposed S-IoT-N is attempted on a physical network testbed and is demonstrated along with basic network connectivity services over it. Finally, the results are validated by an experimental performance evaluation of the PoC physical network testbed along with the recommendations for improvement and future work.
|
2 |
Development of Stimuli-responsive Hydrogels Integrated with Ultra-thin Silicon Ribbons for Stretchable and Intelligent DevicesJanuary 2012 (has links)
abstract: Electronic devices based on various stimuli responsive polymers are anticipated to have great potential for applications in innovative electronics due to their inherent intelligence and flexibility. However, the electronic properties of these soft materials are poor and the applications have been limited due to their weak compatibility with functional materials. Therefore, the integration of stimuli responsive polymers with other functional materials like Silicon is strongly demanded. Here, we present successful strategies to integrate environmentally sensitive hydrogels with Silicon, a typical high-performance electronic material, and demonstrate the intelligent and stretchable capability of this system. The goal of this project is to develop integrated smart devices comprising of soft stimuli responsive polymeric-substrates with conventional semiconductor materials such as Silicon, which can respond to various external stimuli like pH, temperature, light etc. Specifically, these devices combine the merits of high quality crystalline semiconductor materials and the mechanical flexibility/stretchability of polymers. Our innovative system consists of ultra-thin Silicon ribbons bonded to an intelligently stretchable substrate which is intended to interpret and exert environmental signals and provide the desired stress relief. As one of the specific examples, we chose as a substrate the standard thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel with fast response and large deformation. In order to make the surface of the hydrogel waterproof and smooth for high-quality Silicon transfer, we introduced an intermediate layer of poly(dimethylsiloxane) (PDMS) between the substrate and the Silicon ribbons. The optical microscope results have shown that the system enables stiff Silicon ribbons to become adaptive and drivable by the soft environmentally sensitive substrate. Furthermore, we pioneered the development of complex geometries with two different methods: one is using stereolithography to electronically control the patterns and build up their profiles layer by layer; the other is integrating different multifunctional polymers. In this report, we have designed a bilayer structure comprising of a PNIPAAm hydrogel and a hybrid hydrogel of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA). Typical variable curvatures can be obtained by the hydrogels with different dimensional expansion. These structures hold interesting possibilities in the design of electronic devices with tunable curvature. / Dissertation/Thesis / M.S. Chemical Engineering 2012
|
Page generated in 0.073 seconds