• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Machine learning through self generating programs

Lubbe, H.G, Kotze, B.J. January 2007 (has links)
Published Article / People have tried different ways to make machines intelligent. One option is to use a simulated neural net as a platform for Genetic Algorithms. Neural nets are a combination of neurons in a certain pattern. Neurons in a neural net system are a simulation of neurons in an organism's brain. Genetic Algorithms represent an emulation of evolution in nature. The question arose as to why write a program to simulate neurons if a program can execute the functions a combination of neurons would generate. For this reason a virtual robot indicated in Figure 1 was made "intelligent" by developing a process where the robot creates a program for itself. Although Genetic Algorithms might have been used in the past to generate a program, a new method called Single-Chromosome-Evolution-Algorithms (SCEA) was introduced and compared to Genetic Algorithms operation. Instructions in the program were changed by using either Genetic Algorithms or alternatively with SCEA where only one simulation was needed per generation to be tested by the fitness of the system.

Page generated in 0.0824 seconds