• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 35
  • 15
  • 12
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 271
  • 271
  • 229
  • 79
  • 65
  • 65
  • 59
  • 46
  • 41
  • 40
  • 40
  • 39
  • 38
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Self-organizing and optimal control for nonlinear systems

Dong, Wenjie. January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Title from first page of PDF file (viewed January 27, 2010). Includes bibliographical references (p. 82-87). Issued in print and online. Available via ProQuest Digital Dissertations.
72

Performance evaluation of cognitive radio in wireless vehicular communication.

Nyanhete, Eugenia Rudo. January 2012 (has links)
M. Tech. Electrical Engineering. / Discusses the performance of CRs that can be hampered by the environment, modulation schemes and how they can be selected based on the current environment i.e link adaptation, bandwidth efficient schemes and those that are prone to noise, formulate a set of decisions and actions based on the knowledge about the current environment and its effects on propagation and how to use a game theoretic approach for fair use of the spectrum.
73

Intelligent transportation systems

Locke, Danielle Marie 03 October 2011 (has links)
Many transportation systems used today are costly, slow, fragmented, and dangerous. This paper explores the inefficiencies and negative impacts associated with our current transportation systems. Simple to technologically advanced solutions are explored along with how to integrate these methods for all users in a sustainable fashion. The vision proposes a blend of scientific method, technological advancement, and common sense which is environmentally aware and integrated for all users by using the Dutch Regional and Sustainable Traffic Management Process. / text
74

An investigation of realtime data in intelligent transportation systems

Law, Lap-tak, Brendan., 羅立德. January 2002 (has links)
published_or_final_version / Transport Policy and Planning / Master / Master of Arts in Transport Policy and Planning
75

Applications of vehicle location and communication technology in fleetmanagement systems

Wong, Chi-tak, Keith., 黃志德. January 2001 (has links)
published_or_final_version / Transport Policy and Planning / Master / Master of Arts in Transport Policy and Planning
76

MILATRAS: MIcrosimulation Learning-based Approach to TRansit ASsignment

Wahba, Mohamed Medhat Amin Abdel-Latif 26 February 2009 (has links)
Public transit is considered a cost-effective alternative to mitigate the effects of traffic gridlock through the implementation of innovative service designs, and deploying new smart systems for operations control and traveller information. Public transport planners use transit assignment models to predict passenger loads and levels of service. Existing transit assignment approaches have limitations in evaluating the effects of information technologies, since they are neither sensitive to the types of information that may be provided to travellers nor to the traveller’s response to that information. Moreover, they are not adequate for evaluating the impacts of Intelligent Transportation Systems (ITS) deployments on service reliability, which in turn affect passengers’ behaviour. This dissertation presents an innovative transit assignment framework, namely the MIcrosimulation Learning-based Approach to TRansit ASsignment – MILATRAS. MILATRAS uses learning and adaptation to represent the dynamic feedback of passengers’ trip choices and their adaptation to service performance. Individual passengers adjust their behaviour (i.e. trip choices) according to their experience with the transit system performance. MILATRAS introduces the concept of ‘mental model’ to maintain and distinguish between the individual’s experience with service performance and the information provided about system conditions. A dynamic transit path choice model is developed using concepts of Markovian Decision Process (MDP) and Reinforcement Learning (RL). It addresses the departure time and path choices with and without information provision. A parameter-calibration procedure using a generic optimization technique (Genetic Algorithms) is also proposed. A proof-of-concept prototype has been implemented; it investigates the impact of different traveller information provision scenarios on departure time and path choices, and network performance. A large-scale application, including parameter calibration, is conducted for the Toronto Transit Commission (TTC) network. MILATRAS implements a microsimulation, stochastic (nonequilibrium-based) approach for modelling within-day and day-to-day variations in the transit assignment process, where aggregate travel patterns can be extracted from individual choices. MILATRAS addresses many limitations of existing transit assignment models by exploiting methodologies already established in the areas of traffic assignment and travel behaviour modeling. Such approaches include the microsimulation of transportation systems, learning-based algorithms for modelling travel behaviour, agent-based representation for travellers, and the adoption of Geographical Information Systems (GIS). This thesis presents a significant step towards the advancement of the modelling for the transit assignment problem by providing a detailed operational specification for an integrated dynamic modelling framework – MILATRAS.
77

MILATRAS: MIcrosimulation Learning-based Approach to TRansit ASsignment

Wahba, Mohamed Medhat Amin Abdel-Latif 26 February 2009 (has links)
Public transit is considered a cost-effective alternative to mitigate the effects of traffic gridlock through the implementation of innovative service designs, and deploying new smart systems for operations control and traveller information. Public transport planners use transit assignment models to predict passenger loads and levels of service. Existing transit assignment approaches have limitations in evaluating the effects of information technologies, since they are neither sensitive to the types of information that may be provided to travellers nor to the traveller’s response to that information. Moreover, they are not adequate for evaluating the impacts of Intelligent Transportation Systems (ITS) deployments on service reliability, which in turn affect passengers’ behaviour. This dissertation presents an innovative transit assignment framework, namely the MIcrosimulation Learning-based Approach to TRansit ASsignment – MILATRAS. MILATRAS uses learning and adaptation to represent the dynamic feedback of passengers’ trip choices and their adaptation to service performance. Individual passengers adjust their behaviour (i.e. trip choices) according to their experience with the transit system performance. MILATRAS introduces the concept of ‘mental model’ to maintain and distinguish between the individual’s experience with service performance and the information provided about system conditions. A dynamic transit path choice model is developed using concepts of Markovian Decision Process (MDP) and Reinforcement Learning (RL). It addresses the departure time and path choices with and without information provision. A parameter-calibration procedure using a generic optimization technique (Genetic Algorithms) is also proposed. A proof-of-concept prototype has been implemented; it investigates the impact of different traveller information provision scenarios on departure time and path choices, and network performance. A large-scale application, including parameter calibration, is conducted for the Toronto Transit Commission (TTC) network. MILATRAS implements a microsimulation, stochastic (nonequilibrium-based) approach for modelling within-day and day-to-day variations in the transit assignment process, where aggregate travel patterns can be extracted from individual choices. MILATRAS addresses many limitations of existing transit assignment models by exploiting methodologies already established in the areas of traffic assignment and travel behaviour modeling. Such approaches include the microsimulation of transportation systems, learning-based algorithms for modelling travel behaviour, agent-based representation for travellers, and the adoption of Geographical Information Systems (GIS). This thesis presents a significant step towards the advancement of the modelling for the transit assignment problem by providing a detailed operational specification for an integrated dynamic modelling framework – MILATRAS.
78

Advanced motion control and sensing for intelligent vehicles

Li, Li, Wang, Fei-Yue. January 2007 (has links)
Mainly based on Li Li's Ph. D. dissertation: University of Arizona, Tucson, 2005. / Includes bibliographical references and index.
79

A two-level event brokering architecture for information dissemination in vehicular networks

Devkota, Tina. January 2009 (has links)
Thesis (M. S. in Computer Science)--Vanderbilt University, May 2009. / Title from title screen. Includes bibliographical references.
80

Advanced motion control and sensing for intelligent vehicles

Li, Li, Wang, Fei-Yue. January 2007 (has links)
Mainly based on Li Li's Ph. D. dissertation: University of Arizona, Tucson, 2005. / Includes bibliographical references and index. Also available in print.

Page generated in 0.2534 seconds