• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mixed integer programming with dose-volume constraints in intensity-modulated proton therapy

Zhang, Pengfei, Fan, Neng, Shan, Jie, Schild, Steven E., Bues, Martin, Liu, Wei 09 1900 (has links)
Background: In treatment planning for intensity-modulated proton therapy (IMPT), we aim to deliver the prescribed dose to the target yet minimize the dose to adjacent healthy tissue. Mixed-integer programming (MIP) has been applied in radiation therapy to generate treatment plans. However, MIP has not been used effectively for IMPT treatment planning with dose-volume constraints. In this study, we incorporated dose-volume constraints in an MIP model to generate treatment plans for IMPT. Methods: We created a new MIP model for IMPT with dose volume constraints. Two groups of IMPT treatment plans were generated for each of three patients by using MIP models for a total of six plans: one plan was derived with the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method while the other plan was derived with our MIP model with dose-volume constraints. We then compared these two plans by dose-volume histogram (DVH) indices to evaluate the performance of the new MIP model with dose-volume constraints. In addition, we developed a model to more efficiently find the best balance between tumor coverage and normal tissue protection. Results: The MIP model with dose-volume constraints generates IMPT treatment plans with comparable target dose coverage, target dose homogeneity, and the maximum dose to organs at risk (OARs) compared to treatment plans from the conventional quadratic programming method without any tedious trial-and-error process. Some notable reduction in the mean doses of OARs is observed. Conclusions: The treatment plans from our MIP model with dose-volume constraints can meetall dose-volume constraints for OARs and targets without any tedious trial-and-error process. This model has the potential to automatically generate IMPT plans with consistent plan quality among different treatment planners and across institutions and better protection for important parallel OARs in an effective way.
2

Robust optimization of radiation therapy accounting for geometric uncertainty

Fredriksson, Albin January 2013 (has links)
Geometric errors may compromise the quality of radiation therapy treatments. Optimization methods that account for errors can reduce their effects. The first paper of this thesis introduces minimax optimization to account for systematic range and setup errors in intensity-modulated proton therapy. The minimax method optimizes the worst case outcome of the errors within a given set. It is applied to three patient cases and shown to yield improved target coverage robustness and healthy structure sparing compared to conventional methods using margins, uniform beam doses, and density override. Information about the uncertainties enables the optimization to counterbalance the effects of errors. In the second paper, random setup errors of uncertain distribution---in addition to the systematic range and setup errors---are considered in a framework that enables scaling between expected value and minimax optimization. Experiments on a phantom show that the best and mean case tradeoffs between target coverage and critical structure sparing are similar between the methods of the framework, but that the worst case tradeoff improves with conservativeness. Minimax optimization only considers the worst case errors. When the planning criteria cannot be fulfilled for all errors, this may have an adverse effect on the plan quality. The third paper introduces a method for such cases that modifies the set of considered errors to maximize the probability of satisfying the planning criteria. For two cases treated with intensity-modulated photon and proton therapy, the method increased the number of satisfied criteria substantially. Grasping for a little less sometimes yields better plans. In the fourth paper, the theory for multicriteria optimization is extended to incorporate minimax optimization. Minimax optimization is shown to better exploit spatial information than objective-wise worst case optimization, which has previously been used for robust multicriteria optimization. The fifth and sixth papers introduce methods for improving treatment plans: one for deliverable Pareto surface navigation, which improves upon the Pareto set representations of previous methods; and one that minimizes healthy structure doses while constraining the doses of all structures not to deteriorate compared to a reference plan, thereby improving upon plans that have been reached with too weak planning goals. / <p>QC 20130516</p>
3

Impact of interfractional anatomical variation and setup correction methods on interfractional dose variation in IMPT and VMAT plans for pancreatic cancer patients: A planning study / 膵癌に対する強度変調陽子線治療及び強度変調回転放射線治療において解剖学的構造の変化と照合法の違いが線量分布の日間変動に与える影響

Ashida, Ryo 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22734号 / 医博第4652号 / 新制||医||1046(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 妹尾 浩, 教授 増永 慎一郎, 教授 川口 義弥 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
4

Multicriteria optimization for managing tradeoffs in radiation therapy treatment planning

Bokrantz, Rasmus January 2013 (has links)
Treatment planning for radiation therapy inherently involves tradeoffs, such as between tumor control and normal tissue sparing, between time-efficiency and dose quality, and between nominal plan quality and robustness. The purpose of this thesis is to develop methods that can facilitate decision making related to such tradeoffs. The main focus of the thesis is on multicriteria optimization methods where a representative set of treatment plans are first calculated and the most appropriate plan contained in this representation then selected by the treatment planner through continuous interpolation between the precalculated alternatives. These alternatives constitute a subset of the set of Pareto optimal plans, meaning plans such that no criterion can be improved without a sacrifice in another. Approximation of Pareto optimal sets is first studied with respect to fluence map optimization for intensity-modulated radiation therapy. The approximation error of a discrete representation is minimized by calculation of points one at the time at the location where the distance between an inner and outer approximation of the Pareto set currently attains its maximum. A technique for calculating this distance that is orders of magnitude more efficient than the best previous method is presented. A generalization to distributed computational environments is also proposed. Approximation of Pareto optimal sets is also considered with respect to direct machine parameter optimization. Optimization of this form is used to calculate representations where any interpolated treatment plan is directly deliverable. The fact that finite representations of Pareto optimal sets have approximation errors with respect to Pareto optimality is addressed by a technique that removes these errors by a projection onto the exact Pareto set. Projections are also studied subject to constraints that prevent the dose-volume histogram from deteriorating. Multicriteria optimization is extended to treatment planning for volumetric-modulated arc therapy and intensity-modulated proton therapy. Proton therapy plans that are robust against geometric errors are calculated by optimization of the worst case outcome. The theory for multicriteria optimization is extended to accommodate this formulation. Worst case optimization is shown to be preferable to a previous more conservative method that also protects against uncertainties which cannot be realized in practice. / En viktig aspekt av planering av strålterapibehandlingar är avvägningar mellan behandlingsmål vilka står i konflikt med varandra. Exempel på sådana avvägningar är mellan tumörkontroll och dos till omkringliggande frisk vävnad, mellan behandlingstid och doskvalitet, och mellan nominell plankvalitet och robusthet med avseende på geometriska fel. Denna avhandling syftar till att utveckla metoder som kan underlätta beslutsfattande kring motstridiga behandlingsmål. Primärt studeras en metod för flermålsoptimering där behandlingsplanen väljs genom kontinuerlig interpolation över ett representativt urval av förberäknade alternativ. De förberäknade behandlingsplanerna utgör en delmängd av de Paretooptimala planerna, det vill säga de planer sådana att en förbättring enligt ett kriterium inte kan ske annat än genom en försämring enligt ett annat. Beräkning av en approximativ representation av mängden av Paretooptimala planer studeras först med avseende på fluensoptimering för intensitetsmodulerad strålterapi. Felet för den approximativa representationen minimeras genom att innesluta mängden av Paretooptimala planer mellan inre och yttre approximationer. Dessa approximationer förfinas iterativt genom att varje ny plan genereras där avståndet mellan approximationerna för tillfället är som störst. En teknik för att beräkna det maximala avståndet mellan approximationerna föreslås vilken är flera storleksordningar snabbare än den bästa tidigare kända metoden. En generalisering till distribuerade beräkningsmiljöer föreslås även. Approximation av mängden av Paretooptimala planer studeras även för direkt maskinparameteroptimering, som används för att beräkna representationer där varje interpolerad behandlingsplan är direkt levererbar. Det faktum att en ändlig representation av mängden av Paretooptimala lösningar har ett approximationsfel till Paretooptimalitet hanteras via en metod där en interpolerad behandlingsplan projiceras på Paretomängden. Projektioner studeras även under bivillkor som förhindrar att den interpolerade planens dos-volym histogram kan försämras. Flermålsoptimering utökas till planering av rotationsterapi och intensitetsmodulerad protonterapi. Protonplaner som är robusta mot geometriska fel beräknas genom optimering med avseende på det värsta möjliga utfallet av de föreliggande osäkerheterna. Flermålsoptimering utökas även teoretiskt till att innefatta denna formulering. Nyttan av värsta fallet-optimering jämfört med tidigare mer konservativa metoder som även skyddar mot osäkerheter som inte kan realiseras i praktiken demonstreras experimentellt. / <p>QC 20130527</p>

Page generated in 0.1317 seconds