• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Temporal Organization of Neuronal Discharge in the Basal Ganglia of Parkinson's Disease Patients

Lim, Jongil, Sanghera, Manjit K., Darbin, Olivier, Stewart, R. M., Jankovic, Joseph, Simpson, Richard 01 August 2010 (has links)
Previous electrophysiological studies of the basal ganglia in Parkinson's disease (PD) patients have utilized linear analyses in time-or-frequency domains to characterize neuronal discharge patterns. However, these measures do not fully describe the non-linear features of discharge rates and oscillatory activities of basal ganglia neurons.In this original research, we investigate whether non-linear temporal organizations exist in the inter-spike interval series of neurons recorded in the globus pallidus or the subthalamic nucleus in PD patients undergoing surgery for the implantation of deep brain stimulating electrodes.Our data indicate that in approximately 80% of globus pallidus and subthalamic neurons, the raw inter-spike interval sequences have lower entropy values than those observed after shuffling of the original series. This is the first report establishing non-linear temporal organization as a common feature of neuronal discharge in the basal ganglia of PD patients.
2

Spike Processing Circuit Design for Neuromorphic Computing

Zhao, Chenyuan 13 September 2019 (has links)
Von Neumann Bottleneck, which refers to the limited throughput between the CPU and memory, has already become the major factor hindering the technical advances of computing systems. In recent years, neuromorphic systems started to gain increasing attention as compact and energy-efficient computing platforms. Spike based-neuromorphic computing systems require high performance and low power neural encoder and decoder to emulate the spiking behavior of neurons. These two spike-analog signals converting interface determine the whole spiking neuromorphic computing system's performance, especially the highest performance. Many state-of-the-art neuromorphic systems typically operate in the frequency range between 〖10〗^0KHz and 〖10〗^2KHz due to the limitation of encoding/decoding speed. In this dissertation, all these popular encoding and decoding schemes, i.e. rate encoding, latency encoding, ISI encoding, together with related hardware implementations have been discussed and analyzed. The contributions included in this dissertation can be classified into three main parts: neuron improvement, three kinds of ISI encoder design, two types of ISI decoder design. Two-path leakage LIF neuron has been fabricated and modular design methodology is invented. Three kinds of ISI encoding schemes including parallel signal encoding, full signal iteration encoding, and partial signal encoding are discussed. The first two types ISI encoders have been fabricated successfully and the last ISI encoder will be taped out by the end of 2019. Two types of ISI decoders adopted different techniques which are sample-and-hold based mixed-signal design and spike-timing-dependent-plasticity (STDP) based analog design respectively. Both these two ISI encoders have been evaluated through post-layout simulations successfully. The STDP based ISI encoder will be taped out by the end of 2019. A test bench based on correlation inspection has been built to evaluate the information recovery capability of the proposed spiking processing link. / Doctor of Philosophy / Neuromorphic computing is a kind of specific electronic system that could mimic biological bodies’ behavior. In most cases, neuromorphic computing system is built with analog circuits which have benefits in power efficient and low thermal radiation. Among neuromorphic computing system, one of the most important components is the signal processing interface, i.e. encoder/decoder. To increase the whole system’s performance, novel encoders and decoders have been proposed in this dissertation. In this dissertation, three kinds of temporal encoders, one rate encoder, one latency encoder, one temporal decoder, and one general spike decoder have been proposed. These designs could be combined together to build high efficient spike-based data link which guarantee the processing performance of whole neuromorphic computing system.

Page generated in 0.0891 seconds