1 |
Sélectivité rovibrationnelle de l'ionisation de H<sub>2</sub> en champ laser intense. Analyse détaillée de la dissociation induite par électron ou photon d'ions H<sub>2</sub><sup>+</sup> préparés par laserde Ruette, Nathalie 18 December 2007 (has links)
Les développements récents dans le domaine des technologies laser ont ouvert d'intéressantes perspectives en ce qui concerne l'étude de molécules en champ électromagnétique intense. Du point de vue de la théorie, seule la molécule la plus simple H<sub>2</sub> et son ion H<sub>2</sub><sup>+</sup> ont été abondamment étudiés. Expérimentalement, il est cependant malaisé d'exposer un ion moléculaire à un champ laser intense et en particulier, d'en connaître et d'en contrôler l'état vibrationnel de départ. Un montage expérimental nous a permis de déterminer l'excitation vibrationnelle accompagnant l'ionisation de H<sub>2</sub> par impulsions brèves et intenses. Les résultats montrent une excitation beaucoup plus faible que celle supposée pendant plus de dix ans. Cette étude a démontré qu'il est possible de produire en abondance des ions moléculaires dans un état d'excitation vibrationnelle et rotationnelle bien précis grâce à une résonance avec un état intermédiaire à fort caractère de Rydberg.
Des expériences nécessitant la sélection du niveau vibrationnel initial de l'ion sont alors réalisables. Nous avons ainsi pu mesurer, en injectant dans l'anneau de stockage TSR de Heidelberg les paquets d'ions produits par notre laser nanoseconde accordable, la section efficace de recombinaison dissociative et d'excitation dissociative de H<sub>2</sub><sup>+</sup>, dans les états quantiques v<sup>+</sup>=0 et 1, N<sup>+</sup>=1, 2 et 3, et d'en observer la désexcitation vibrationnelle par collision avec des électrons lents. Ces données sont du plus grand intérêt car elles peuvent être directement comparées à la théorie sans faire intervenir de moyenne thermodynamique.
Nous pouvons aussi nous intéresser au comportement d'ions parfaitement caractérisés du point de vue de leur état quantique en présence d'un champ laser bref et intense, voire d'une séquence d'impulsions. Les expériences réalisées jusqu'ici ne concernent que des ions préparés par impact électronique dans une distribution vibrationnelle de type Franck-Condon. Seuls les effets dus aux niveaux élevés ont pu être mis en évidence, ce qui pourra être évité en produisant sélectivement H<sub>2</sub><sup>+</sup> dans les niveaux de vibration v<sup>+</sup>=0 ou 1. Des résultats préliminaires ont été obtenus, et une technique de piégeage a été élaborée pour pouvoir réaliser de telles expériences dans l'avenir, combinant des lasers dont le taux de répétition diffère de plusieurs ordres de grandeur.
|
2 |
Contrôle et optimisation du test d'adhérence par choc laser sur assemblages collés / Control and optimization of laser shock adhesion test on bonded assembliesBardy, Simon 18 December 2017 (has links)
La généralisation du procédé d’assemblage par collage au sein des structures aérospatiales, aéronautiques et automobiles est confrontée au besoin d’évaluation non destructive quantitative des assemblages. Le procédé de test d’adhérence par choc laser (LASAT) répond à cette problématique par la sollicitation calibrée des joints collés et l’utilisation de diagnostics non-destructifs pour déterminer l’état résiduel des joints suite à cette sollicitation qui doit décoller les joints faibles et préserver l’intégrité structurelle des assemblages corrects. La détermination des paramètres laser optimaux pour mettre en œuvre ce test d’épreuve non-destructif (ND-LASAT) est réalisée par l’application d’une méthodologie bien définie. Cette dernière implique la caractérisation par une approche expérimentale et numérique de l’assemblage considéré, suivie d’une phase d’optimisation. La diversification des configurations d’interaction-laser matière impliquées dans ces configurations optimisées nécessite de disposer d’outils numériques pour prédire les chargements appliqués aux joints collés. Dans cette étude, le développement et la validation de modèles intégrés dans un code multi-physique répond à ce besoin. Un effort particulier a été porté sur l’évaluation de la précision des chargements simulés. Enfin, la démonstration du procédé ND-LASAT sur trois différents assemblages collés a été réalisée, validant ainsi la méthodologie et la chaine numérique développées dans cette étude. / Bonding process generalization within aerospace, aeronautical and automotive structures faces the need of quantitative non-destructive evaluation of assemblies. Laser shock adhesion test (LASAT) meets this requirement by applying a calibrated stress to bonded joints and using non-destructive diagnostics to determine the post-shock state of the joint. The calibrated stress must disbond weak joints and keep correct assemblies intact. Optimal laser parameters determination aims at implementing this non-destructive proof test (ND-LASAT). It is achieved through application of a well-defined methodology, which implies the concerned assembly characterization by an experimental and numerical approach, followed by an optimization step. Optimization implies diversification of laser-matter configurations. Use of numerical tools for predicting loadings applied to bonded joints is then required. Models development within a multi-physics code is proposed and validated here to respond to this need. A significant effort has been made for evaluating models’ precision. Experimental demonstration of ND-LASAT process is achieved on three different bonded assemblies, and thus validating both methodology and numerical chain developed in this study.
|
3 |
Effets radiatifs et quantiques dans l'interaction laser-matière ultra-relativiste / Radiative and quantum electrodynamic effects in ultra-relativistic laser-matter interactionMartinez, Bertrand 18 December 2018 (has links)
L'avènement d'une nouvelle génération de lasers ultra-relativistes (d'éclairement supérieur à 10^22 W/cm2), tels le laser APOLLON sur le plateau de Saclay, donnera lieu à un régime d'interaction laser-matière sans précédent, couplant physique des plasmas relativistes et effets électrodynamiques quantiques. Sources de particules et de rayonnements aux propriétés énergétiques et spatio-temporelles inédites, ces lasers serviront, entre autres applications, à la mise au point de nouveaux concepts d'accélérateurs et de diagnostics radiographiques, au chauffage de plasmas denses, comme à la reproduction de configurations astrophysiques en laboratoire. En prévision des futures expériences, les codes particle-in-cell (PIC), qui constituent les outils de référence pour la simulation de l'interaction laser-plasma, doivent être enrichis des processus radiatifs et quantiques propres à ce nouveau régime d'interaction. C'est le cas du code CALDER développé au CEA/DAM, qui modélise désormais l'émission de photons énergétiques et la conversion de ceux-ci en paires électron-positron ; autant d'effets susceptibles d'affecter le bilan d'énergie de l'interaction laser-cible et, plus précisément, le rendement du laser en particules et rayonnements énergétiques. L'objet de ce stage théorique est d'étudier, à l'aide du code CALDER, l'influence de ces processus dans un certain nombre de scénarios physiques en champ extrême (accélération électronique et ionique dans un plasma surcritique, production de rayonnement, génération de choc non-collisionnel…). / Forthcoming multi-petawatt laser systems, such as the French Apollon and European Extreme Light Infrastructure facilities, are expected to deliver on-target laser intensities exceeding 10^22 W/cm^2. A novel regime of laser-matter interaction will ensue, where ultra-relativistic plasma effects are coupled with copious generation of high-energy photons and electron-positron pairs. This will pave the way for many transdisciplinary applications in fundamental and applied research, including the development of unprecedentedly intense, compact particle and radiation sources, the experimental investigation of relativistic astrophysical scenarios and tests of quantum electrodynamics theory.In recent years, most theoretical studies performed in this research field have focused on the impact of synchrotron photon emission and Breit-Wheeler pair generation, both directly induced by the laser field and believed to be dominant at intensities >10^22 W/cm^2. At the lower intensities (≲10^21 Wcm^(-2)) currently attainable, by contrast, photon and pair production mainly originate from, respectively, Bremsstrahlung and Bethe-Heitler/Trident processes, all triggered by atomic Coulomb fields. The conditions for a transition between these two regimes have, as yet, hardly been investigated, particularly by means of integrated kinetic numerical simulations. The purpose of this PhD is precisely to study the aforementioned processes under various physical scenarios involving extreme laser-plasma interactions. This work is carried out using the particle-in-cell CALDER code developed at CEA/DAM which, over the past few years, had been enriched with modules describing the synchrotron and Breit-Wheeler processes.Our first study aimed at extending the simulation capabilities of CALDER to the whole range of photon and positron generation mechanisms arising during relativistic laser-plasma interactions. To this purpose, we have implemented modules for the Coulomb-field-mediated Bremsstrahlung, Bethe-Heitler and Trident processes. Refined Bremsstrahlung and Bethe-Heitler cross sections have been obtained which account for electronic shielding effects in arbitrarily ionized plasmas. Following validation tests of the Monte Carlo numerical method, we have examined the competition between Bremsstrahlung/Bethe-Heitler and Trident pair generations by relativistic electrons propagating through micrometer copper foils. Our self-consistent simulations qualitatively agree with a 0-D theoretical model, yet they show that the deceleration of the fast electrons due to target expansion significantly impacts pair production.We then address the competition between Bremsstrahlung and synchrotron emission from copper foils irradiated at 10^22 Wcm^(-2). We show that the maximum radiation yield (into >10 keV photons) is achieved through synchrotron emission in relativistically transparent targets of a few 10 nm thick. The efficiency of Bremsstrahlung increases with the target thickness, and takes over synchrotron for >2μm thicknesses. The spectral properties of the two radiation processes are analyzed in detail and correlated with the ultrafast target dynamics.Finally, we investigate the potential of nanowire-array targets to enhance the synchrotron yield of a 10^22 Wcm^(-2) femtosecond laser pulse. Several radiation mechanisms are identified depending on the target parameters and as a function of time. A simulation scan allows us to identify the optimal target geometry in terms of nanowire width and interspacing, yielding a ∼10% radiation efficiency. In this configuration, the laser-driven nanowire array rapidly expands to form a quasi-uniform, relativistically transparent plasma. Furthermore, we demonstrate that uniform sub-solid targets can achieve synchrotron yields as high as in nanowire arrays, but that the latter enable a strong emission level to be sustained over a broader range of average plasma density.
|
4 |
Modélisation physique du procédé de découpe de métaux par laserMas, Cédric 24 April 2003 (has links) (PDF)
Ce travail de thèse développe un modèle physique de découpe de métaux par laser. Le procédé complet est divisé en une série de processus élémentaires qui s'étend de la propagation de faisceaux laser gaussiens jusqu'à l'évacuation du métal fondu sous l'action de cisaillement du gaz de découpe. L'ensemble des processus élémentaires est alors unifié au sein d'un modèle stationnaire 2D, « auto-consistant », fournissant la géométrie du front avant de la saignée de découpe. Les comparaisons entre résultats de simulation et expériences de « découpe pure » fournissent de très bonnes corrélations. Par ailleurs, des expériences complémentaires semblent indiquer que l'absorptivité réelle est d'environ 20% supérieure à celle prédite par le modèle de Drude et les équations de Fresnel. La non-planéité et la non-stationnarité du front d'absorption peuvent justifier une telle augmentation. Finalement, nous ouvrons les perspectives en présentant un modèle 3D de la géométrie de la saignée de découpe. Nous abordons la découpe laser sous oxygène et finissons par une approche des stries de découpe.
|
5 |
Accélération de protons par laser à ultra-haute intensité : étude et application au chauffage isochoreCarrié, Michaël 04 February 2011 (has links) (PDF)
L'interaction d'impulsions lasers brèves et intenses avec un plasma est une source intéressante d'ions énergétiques. Les travaux effectués au cours de cette thèse s'articulent autour de deux grandes thématiques : la production de protons par laser, et leur utilisation pour le chauffage isochore, avec, pour principal outil d'étude, la simulation à l'aide de codes numériques (cinétique particulaire et hydrodynamique). Dans un premier temps, nous avons étudié le comportement de l'énergie cinétique maximale des protons qu'il est possible d'accélérer avec le mécanisme du Target Normal Sheath Acceleration (TNSA), en régime sub-ps, en fonction de différents paramètres, notamment de la durée d'impulsion laser. Nous avons montré que l'allongement de la durée d'impulsion, à énergie laser constante, est responsable du préchauffage et de la détente du plasma avant l'arrivé du pic d'intensité. Les gradients de densité ainsi produits (face avant et face arrière) peuvent favoriser, ou au contraire pénaliser, le gain en énergie cinétique des protons. Les résultats obtenus ont servi à l'interprétation d'une étude expérimentale réalisée au Laboratoire d'Optique Appliquée. Nos efforts se sont ensuite concentrés sur l'élaboration d'un modèle semi-analytique rendant compte de l'énergie cinétique maximale des protons accélérés par le biais du TNSA. Ce modèle permet de retrouver l'ordre de grandeur des intensités nécessaires, de l'ordre de 6x1021 W/cm², pour atteindre des énergies de proton supérieures à 150 MeV avec des impulsions laser de quelques joules et plusieurs dizaines de fs. Dans la dernière partie de cette thèse, nous nous sommes intéressés à l'utilisation de ces faisceaux de protons pour le chauffage isochore. Nous avons caractérisé, dans un premier temps, les fonctions de distribution produites par des cibles composées d'un substrat lourd (A >> 1) sur la face arrière duquel est déposé un plot d'hydrogène (schéma d'Esirkepov). Ensuite, à partir de simulations hydrodynamiques, nous avons étudié le temps caractéristique de détente de la cible chauffée en modifiant des paramètres tels que la distance à la source de protons, l'intensité et la tache focale du laser, et la densité surfacique du plot. Nous avons enfin étendu cette étude aux cibles cylindriques et nous avons montré qu'il est possible de réduire les effets liés à la divergence naturelle du faisceau de protons et ainsi d'obtenir des températures plus élevées.
|
6 |
Les chocs radiatifs générés par les lasers à haute énergie: une opportunité pour l'astrophysique de laboratoire.Vinci, Tommaso 10 May 2006 (has links) (PDF)
Le travail de cette thèse s'inscrit dans le vaste domaine de l'astrophysique de laboratoire, avec la création et la caractérisation d'un régime dans lequel la matière et le rayonnement sont étroitement couplés. Cela met en jeu des techniques de génération de chocs très rapides et très chauds conduisant à ce que l'on appelle les chocs radiatifs. L'objectif de cette thèse est d'une part de recréer en laboratoire les conditions d'un choc radiatif, d'autre part de l'étudier en mesurant un grand nombre de paramètres simultanément pour donner une cohérence la plus haute possible. On présentera aussi pour chaque mesure, la comparaison avec les codes de simulation de l'hydrodynamique radiative. Au cours de cette thèse, nous avons effectué au sein du laboratoire LULI deux campagnes expérimentales sur deux installations laser différentes (l'ancienne chaîne 6F et le tout nouveau LULI2000). La première campagne s'est déroulée en 2002 et la seconde au début 2005. Ces expériences ont fait l'objet de nombreuses collaborations. Outre l'apport important des équipes techniques du LULI (équipe laser, équipe d'exploitation, équipe mécanique, ...), les équipes extérieures (le CEA-DAM, le LUTH et le GEPI de l'observatoire de Paris Meudon et l'université de Rome «La Sapienza» en Italie) ont notamment participé à la définition des expériences, la conception et fabrication des cibles et au calcul numérique.
|
7 |
Etude des processus thermophysiques en régime d'interaction laser/matière nanoseconde par pyro/réflectométrie rapideAmin chalhoub, Eliane 10 December 2010 (has links) (PDF)
Face au développement actuel des nanotechnologies, l'étude et la caractérisation des propriétés thermiques des couches minces et des nanomatériaux devient nécessaire pour le développement et la qualité des nouvelles technologies. Notre système expérimental a été conçu et mis en oeuvre dans le but d'étudier les différents phénomènes qui régissent l'interaction matière/laser nanoseconde en temps réel. Ce système est composé de deux méthodes optiques complémentaires : la réflectivité résolue en temps RRT et la pyrométrie infrarouge rapide PIR. Nous avons montré dans un premier temps la possibilité d'étudier en temps réel les modifications de l'état de surface d'une couche mince métallique déposée sur un substrat isolant, le phénomène de photoluminescence ainsi que la cinétique de fusion/resolidification et celle de l'ablation. De plus, nous présenterons une méthode originale afin de déterminer les propriétés thermiques (la capacité calorifique volumique et la conductivité thermique) des surfaces nanostructurées. L'analyse nécessite une préparation de l'échantillon ainsi que l'utilisation d'un modèle théorique éprouvé que l'on ajuste avec un algorithme d'optimisation sur nos relevés expérimentaux.
|
8 |
Etude des processus thermophysiques en régime d'interaction laser/matière nanoseconde par pyro/réflectométrie rapide / Fast pyro/reflectometry study of thermophysical processus induced by nanosecond laser/material interactionAmin Chalhoub, Eliane 10 December 2010 (has links)
Face au développement actuel des nanotechnologies, l'étude et la caractérisation des propriétés thermiques des couches minces et des nanomatériaux devient nécessaire pour le développement et la qualité des nouvelles technologies. Notre système expérimental a été conçu et mis en oeuvre dans le but d'étudier les différents phénomènes qui régissent l'interaction matière/laser nanoseconde en temps réel. Ce système est composé de deux méthodes optiques complémentaires : la réflectivité résolue en temps RRT et la pyrométrie infrarouge rapide PIR. Nous avons montré dans un premier temps la possibilité d'étudier en temps réel les modifications de l'état de surface d'une couche mince métallique déposée sur un substrat isolant, le phénomène de photoluminescence ainsi que la cinétique de fusion/resolidification et celle de l'ablation. De plus, nous présenterons une méthode originale afin de déterminer les propriétés thermiques (la capacité calorifique volumique et la conductivité thermique) des surfaces nanostructurées. L'analyse nécessite une préparation de l'échantillon ainsi que l'utilisation d'un modèle théorique éprouvé que l'on ajuste avec un algorithme d'optimisation sur nos relevés expérimentaux. / The recent development of nanotechnology has made the study and the characterisation of thermal properties of thin films and nanomaterials very important for the development and the quality of new technologies. Our experimental setup is designed and built in order to study different phenomena, in real time, that arise while the interaction of a laser with materials at the nanosecond scale. This system is composed of two complementary optical diagnostics, the time resolved reflectivity and the fast infrared pyrometry. First, we have shown the ability to study in real time the surface structural changes in the case of a thin metal layer deposited on an insulating substrate, the phenomenon of photoluminescence and the kinetics of melting/resolidification and also the ablation. In addition, we present a novel method in order to determine the thermal properties (volumetric heat capacity and thermal conductivity) of nanostructured surfaces. The analysis is based on the use of a proven theoretical model that is adjusted with an optimisation algorithm on our experimental measurements.
|
9 |
Contrôle de rayonnements térahertz intenses produits par lasers femtosecondes et applications à la détection de molécules / Control of intense terahertz radiations produced by femtosecond lasers and applications to the detection of moleculesNguyen, Alisée 28 January 2019 (has links)
Les ondes térahertz (THz), situées entre l'infrarouge et les micro-ondes dans le spectre électromagnétique, correspondent aux fréquences caractéristiques de nombreux mouvements moléculaires et permettent ainsi de caractériser des molécules complexes par spectroscopie dans le domaine temporel. Cette thèse a pour objectif d'étudier les champs THz émis par une source constituée d'une impulsion laser à deux couleurs générant un plasma par ionisation de l'air. En raison de l'asymétrie temporelle du champ laser, un courant électronique présentant une composante basse-fréquence dans la gamme THz est formé dans le plasma par conversion non linéaire et produit un champ secondaire comprenant une composante THz. Les effets non linéaires intervenant dans la génération du rayonnement THz sont l'effet Kerr à basse intensité (< 10¹³ W/cm²) et les photocourants à plus haute intensité (> 10¹³ W/cm²), au-dessus du seuil d'ionisation. Ce dernier mécanisme, qui génère le plus de rayonnement THz, est principalement étudié dans ce manuscrit. Si la puissance crête de l'impulsion laser est suffisamment élevée, des filaments de lumière peuvent être formés par combinaison de l'effet Kerr focalisant et de la formation d'un plasma défocalisant. Le phénomène de filamentation laser permet ainsi de créer des ondes THz à distance. En modulant l'impulsion laser, il est aussi possible de modifier les champs et spectres THz associés. En particulier, nous étudions les effets d'une dérive de fréquence et de la combinaison de multi-impulsions sur l'efficacité de conversion laser-THz. Nous consacrons en outre une large part de nos études à l'influence de l'augmentation de la longueur d'onde laser sur le rendement en énergie de l'émission THz. / The terahertz waves (THz), located between the infrared and the microwaves in the electromagnetic spectrum, correspond to the characteristic frequencies of numerous molecular motions and thus make it possible to characterize complex molecules by time-domain spectroscopy. This thesis aims to study the THz fields emitted by a source formed by a two-color laser pulse generating a plasma by air ionization. Due to the time asymmetry of the laser field, an electric current having a low-frequency component in the THz range is formed in the plasma by nonlinear conversion, generating a secondary field including a THz component. The nonlinear effects involved in the generation of THz radiation are the Kerr effect at low intensity (< 10¹³ W/cm²) and the photocurrents at higher intensity (> 10¹³ W/cm²), above the ionization threshold. This latter mechanism, which generates the most THz radiation, is mainly studied in this manuscript. If the peak power of the laser pulse is sufficiently high, light filaments can be created by combining the focusing Kerr effect and the defocusing action of the plasma. So, the filamentation process can produce THz waves remotely. By modulating the laser pulse, it is possible to modify the associated THz fields and spectra. In particular, we study the effects of pulse chirping and multi-pulse combination. We also devote a large part of our studies to the influence of increasing the laser wavelength on the THz energy yield.
|
10 |
Etude des plasmas générés par interaction laser-matière en régime confiné. Application au traitement des matériaux par choc laser.Sollier, Arnaud 24 September 2002 (has links) (PDF)
Ce travail de thèse est consacré à l'étude des plasmas générés par interaction laser-matière en régime confiné, et plus particulièrement à leur application au traitement des matériaux par choc laser. <br />Afin de mieux comprendre les phénomènes physiques mis en jeu dans ce régime d'interaction particulier, une modélisation originale du procédé a été développée. Un code numérique traitant les processus de claquage dans l'eau de confinement permet dans un premier temps de déterminer les caractéristiques (intensité crête et durée à mi-hauteur) de l'impulsion laser transmise à travers la fenêtre de confinement. Un modèle hydrodynamique auto-consistant traitant les plasmas confinés (plasmas froids et denses, corrélés et partiellement dégénérés) utilise ensuite ces paramètres pour calculer les chargements mécaniques et thermiques induits à la surface de la cible traitée. Pour terminer, ces chargements sont utilisés en entrée du code aux éléments finis ABAQUS afin de simuler les contraintes résiduelles d'origine mécanique et thermique induites par le traitement. <br />Les résultats de ces simulations ont été validés par comparaison avec différentes mesures expérimentales réalisées pour des conditions d'irradiation laser (longueurs d'ondes de 1064 nm et de 532 nm, durées d'impulsion de 3 ns et 10 ns) typiques des conditions opératoires réelles utilisées au niveau industriel. <br />Ces résultats montrent que les petites taches focales permettent de limiter fortement le chauffage de la cible par le plasma confiné, et donc de s'affranchir des effets thermiques induits par le traitement. Ils ouvrent donc de nouvelles perspectives quant à la réalisation du traitement par choc laser sans utiliser de revêtement thermo-protecteur. Par ailleurs, ils permettant d'expliquer les résultats obtenus avec la configuration de traitement développée par Toshiba (très petites taches focales, haute cadence, pas de revêtement protecteur), qui demeuraient incompris jusqu'alors.
|
Page generated in 0.161 seconds