• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incremental Design Migration Support in Industrial Control Systems Development

Balasubramanian, Harish 04 December 2014 (has links)
Industrial control systems (ICS) play an extremely important role in the world around us. They have helped in reducing human effort and contributed to automation of processes in oil refining, power generation, food and beverage and production lines. With advancement in technology, embedded platforms have emerged as ideal platforms for implementation of such ICSes. Traditional approaches in ICS design involve switching from a model or modeling environment directly to a real-world implementation. Errors have the potential to go unnoticed in the modeling environment and have a tendency to affect real control systems. Current models for error identification are complex and affect the design process of ICS appreciably. This thesis adds an additional layer to ICS design: an Interface Abstraction Process (IAP). IAP helps in incremental migration from a modeling environment to a real physical environment by supporting intermediate design versions. Implementation of the IAP is simple and independent of control system complexity. Early error identification is possible since intermediate versions are supported. Existing control system designs can be modified minimally to facilitate the addition of an extra layer. The overhead of adding the IAP is measured and analysed. With early validation, actual behavior of the ICS in the real physical setting matches the expected behavior in the modeling environment. This approach to ICS design adds a significant amount of latency to existing ICSes without affecting the design process significantly. Since the IAP helps in early design validation, it can be removed before deployment in the real-world. / Master of Science
2

A Unifying Interface Abstraction for Accelerated Computing in Sensor Nodes

Iyer, Srikrishna 31 August 2011 (has links)
Hardware-software co-design techniques are very suitable to develop the next generation of sensornet applications, which have high computational demands. By making use of a low power FPGA, the peak computational performance of a sensor node can be improved without significant degradation of the standby power dissipation. In this contribution, we present a methodology and tool to enable hardware/software co-design for sensor node application development. We present the integration of nesC, a sensornet programming language, with GEZEL, an easy-to-use hardware description language. We describe the hardware/software interface at different levels of abstraction: at the level of the design language, at the level of the co-simulator, and in the hardware implementation. We use a layered, uniform approach that is particularly suited to deal with the heterogeneous interfaces typically found on small embedded processors. We illustrate the strengths of our approach by means of a prototype application: the integration of a hardware-accelerated crypto-application in a nesC application. / Master of Science

Page generated in 0.1453 seconds