1 |
Quantitative evaluation of thin film adhesion using the probe testChadha, Harpreet Singh 26 October 2006 (has links)
In this study, a test technique, referred to as the probe test, has been developed as a quantitative tool for measuring the adhesion in thin adhesive films and coatings. The technique was initially developed as a qualitative test by the Hewlett-Packard Company for measuring adhesion of thin film microelectronic coatings. In the probe test method, an inclined needle-like probe with a conical tip is advanced underneath the free edge of a thin polymeric coating bonded to a substrate, causing the edge to lift-up from the surface of the substrate. A debond is thus initiated at the loading point and propagates as a semi-circular crack at the interface as the probe slides under the coating. A standard test procedure has been developed for testing thin adhesive coating/substrate systems. The sample system used is a thin film epoxy polymer coated silicon system. The interfacial fracture energy (Gc) (or critical strain energy release rate) has been used as a quantitative measure of adhesion for the given adhesive coating/substrate system.
The probe test experiments were conducted using an optical microscope and a WYKO optical profiler. Using the optical microscope, the debond radius was measured for different debond sizes. Using the WYKO optical profiler, the three-dimensional surface topography of the debonded coating around the crack front was measured for different debond sizes. Using the experimental data from the probe test, analytical and numerical (finite element-based) techniques have been developed to determine the interfacial fracture energy (Gc) for the given adhesive coating/substrate system. The analytical techniques were developed based on different plate theory formulations (thin/thick plate - small/large deflection) of the probe test geometry and local curvature measurement at the crack tip. The finite element based techniques were developed using a hybrid numerical-experimental approach and surface-based contact interaction analysis in ABAQUS. The results obtained using thick plate-large deflection formulation correlated with finite element contact interaction analysis results. The probe test can be used with transparent or opaque coatings and thus offers a promising alternative to indentation and other tests methods for characterizing thin film and coating adhesion. / Master of Science
|
2 |
Determining Interfacial Adhesion Performance and Reliability for Microelectronics Applications Using a Wedge Test MethodSingh, Hitendra Kumar 18 January 2005 (has links)
Fracture mechanics is an effective approach for characterizing material resistance to interfacial failure and for making interface reliability predictions. Because interfacial bond integrity is a major concern for performance and reliability, the need to evaluate the fracture and delamination resistance of an interface under different environmental conditions is very important. This study investigates the effects of temperature, solution chemistry and environmental preconditioning, in several solutions on the durability of silicon/epoxy and glass/epoxy systems. A series of experiments was conducted using wedge test specimens to investigate the adhesion performance of the systems subjected to a range of environmental conditions. Both silicon and glass systems were relatively insensitive to temperature over a range of 22-60°C, but strongly accelerated by temperatures above 60°C, depending on the environmental chemistry and nature of the adhesive system used.
Silicon/commercial epoxy specimens were subjected to preconditioning in deionized (DI) water and more aggressive solution mixtures prior to wedge insertion to study the effect of prior environmental exposure time on the system. The wedge test data from preconditioned specimens were compared with standard wedge test results and the system was insensitive to preconditioning in DI water but was affected significantly by preconditioning in aggressive environments. Plots describing - G (crack velocity versus applied strain energy release rate) characteristics for a particular set of environmental conditions are presented and a comparison is made for different environmental conditions to quantify the subcritical debonding behavior of systems studied. A kinetic model to characterize subcritical debonding of adhesives for microelectronic applications is also proposed based on molecular interactions between epoxy and a silane coupling agent at the interface and linear elastic fracture mechanics, which could help predict long-term deterioration of interfacial adhesion. / Master of Science
|
3 |
Experimental and Numerical Investigations on the Durability and Fracture Mechanics of the Bonded Systems for Microelectronics ApplicationGuo, Shu 01 September 2003 (has links)
Water-assisted crack growth at an epoxy/glass interface was measured as a function of applied strain energy release rate, G, and temperature using a wedge test geometry. The specimens consist of two glass plates bonded with a thin layer of proprietary epoxy adhesive. The crack fronts along the epoxy/glass interfaces were measured using an optical stereomicroscope. The relationship between G and the debonding rate, v, can be measured using this method, and the threshold value of strain energy release rate, Gth, can be determined from the measured data. Two types of testing procedures were conducted in this study: ex situ, i.e., pre-conditioned wedge tests and in situ ones, in which wedges were applied before the specimens were submerged into water. A preliminary model was developed based on the thermal activation barrier concept, and allows the prediction of Gth for the temperatures beyond the testing region.
Changes in interfacial strain energy release rate caused by thermal residual stresses in a triple-layered specimen were analyzed in Chapter Three. The method is based on linear elastic fracture mechanics and simple beam theory. The curvature of a bimaterial strip was chosen to characterize the residual stress in the specimen, and the strain energy release rate, caused by both tensile and compressive residual stresses in the adhesive, was derived for an asymmetric double cantilever beam (ADCB) geometry. The contribution of the thermal residual and mechanical stress to the global energy release rate was analyzed. The thermally induced energy release rate, GT, is found to be independent of crack length, but is a function of residual stress level and geometric and material parameters of the specimen.
The adhesion of films and coatings to rigid substrates is often measured using blister geometries, which are loaded either by an applied pressure or a central shaft. The measurement will be affected if there are residual stresses that make a contribution to the energy release rate. This effect is investigated using analytical solutions based on the principle of virtual displacements. A geometrically nonlinear finite element analysis is conducted for comparison. Furthermore, the relationships among strain energy release rate, load, deflection, and fracture radius are discussed in detail in Chapter Four. Both analytical solutions and numerical results reveal that uniform tensile residual stresses reduce a specimen's deflection if it experiences plate behavior under small loads. However, this effect diminishes when membrane behavior is dominant.
The mechanics of a single-lap joint with different boundary conditions subjected to tensile loading are investigated. Closed-form solutions are obtained for a specimen configuration considering different clamping methods. Based on the approach pioneered by Goland and Reissner, the solutions reported in this paper provide a simple but useful way to understand the effects of boundary conditions on this test geometry. The solutions in this study suggest that different grip configurations mainly affect the response of the specimens if the grip position is close to the joint edge or the loads are small. Generally, the influence caused by different gripping methods is only limited to the boundary region, and the behavior of the joint part subjected to tensile loading is almost the same as that for a simply-supported case. / Ph. D.
|
Page generated in 0.0924 seconds