• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Further Investigation on Null and Interior Field Methods for Laplace¡¦s Equation with Very Small Circular Holes

Lin, I-Sheng 12 August 2011 (has links)
The error analysis is made for the simple annular domain with the circular boundaries having the same origin. The error bounds are derived, and the optimal convergence rates can be archived. For circular domains with circular boundaries, the same convergence rates can be achieved by strict proof. Moreover, the NFM algorithms and its conservative schemes can be applied to very small holes, which are difficult for other numerical methods to handle. Both the NFM and the collocation Trefftz method(CTM) are used for very small circular holes, the CTM is superior to the NFM in accuracy and stability.
2

The Collocation Trefftz Method for Laplace's Equation on Annular Shaped Domains, Circular and Elliptic Boundaries

Wu, Sin-Rong 19 August 2011 (has links)
The collocation Trefftz method (CTM) proposed in [36] is employed to annular shaped domains, and new error analysis is made to yield the optimal convergence rates. This popular method is then applied to the special case: the Dirichlet problems on circular domains with circular holes, and comparisons are made with the null field method (NFM) proposed , and new interior field method (IFM) proposed in [35], to find out that both errors and condition numbers are smaller. Recently, for circular domains with circular holes, the null fields method (NFM) is proposed by Chen and his groups. In NFM, the fundamental solutions (FS) with the source nodes Q outside of the solution domains are used in the Green formulas, and the FS are replaced by their series expansions. The Fourier expansions of the known or the unknown Dirichlet and Neumann boundary conditions on the circular boundaries are chosen, so that the explicit discrete equations can be easily obtained by means of orthogonality of Fourier functions. The NFM has been applied to elliptic equations and eigenvalue problems in circular domains with multiple holes, reported in many papers; here we cite those for Laplace¡¦s equation only (see [18, 19, 20]). For the boundary integral equation (BIE) of the first kind, the trigonometric functions are used in Arnold [4, 5], and error analysis is made for infinite smooth solutions, to derive the exponential convergence rates. In Cheng¡¦s Dissertation [21, 22], for BIE of the first kind, the source nodes are located outside of the solution domain, the linear combination of fundamental solutions are used, and error analysis is made only for circular domains. This fact implies that not only can the CTM be applied to arbitrary domains, but also a better numerical performance is provided. Since the algorithms of the CTM is simple and its programming is easy, the CTM is strongly recommended to replace the NFM for circular domains with circular holes in engineering problems.

Page generated in 0.078 seconds