1 |
Studies on friction stir lap welding of Cu-Ni alloy and low carbon steelChen, Hui-Lin 26 August 2010 (has links)
In this study, the experimental apparatus with a friction stir welding dynamometer was employed to investigate the joint characteristics of Cu-Ni alloy plate in thickness of 3.6mm lap-welding to low carbon steel plate in thickness of 4 mm using cylinder type tool (without probe) under the welding parameters of rotating speeds (800~1400 rpm) and traveling speed of tool (10~80 mm/min). To prevent the joint interface from oxidizing during the welding process, the joint interfaces of Cu-Ni alloy and low carbon steel respectively were electroplated with Ni coating layer in different thicknesses before the welding. The effect of the thickness of Ni coating layer on shear strength of joint interface and the mechanism of welding are also investigated.
Experimental results show that under the rotating speed of 1000 rpm and travelling speed of 10 mm/min, the shear strength for without Ni coating layer is measured about 100 MPa. On the other hand, the shear strength is increased to saturated value of 290 MPa with increasing the thickness of Ni coating layer. Especially, the shear strength of joint interface for the Cu-Ni alloy with 5£gm thickness of Ni coating layer lap-welding to low carbon steel with thickness of 20£gm thickness of Ni coating layer is about 2.9 times of that for without Ni coating layer. Moreover, the downward force (Fd) is decreased and the maximum interface temperature (Tmax) and shear strength (£n) are increased with increasing the rotating speed (N). The downward force is increased and the maximum interface temperature and shear strength are decreased with increasing the traveling speed (f). This complex relationship is discussed by the new parameter of Fd¡EN/f, the relationship among Fd¡EN/f, maximum interface temperature and shear strength shows that the maximum interface temperature is increased and shear strength is increased to saturated value of 290 MPa with increasing Fd¡EN/f. The phenomenon is explained that the diffusion bonding between the joint interface of two plates become more homogeneous.
|
2 |
Zinc speciation of a smelter contaminated boreal forest site2013 December 1900 (has links)
HudBay Minerals (formerly the Hudson Bay Mining and Smelting Co., Limited) has operated a Zn and Cu processing facility in Flin Flon, MB since the 1930’s. Located in the Boreal Shield, the area surrounding the mine complex has been severely impacted by both natural (forest fires) and the anthropogenic disturbance, which has adversely affected recovery of the local forest ecosystem. Zinc is one of the most prevalent smelter-derived metals in the soils and has been identified as a key factor limiting natural revegetation of the landscape. Because metal toxicity is related more to speciation than to total concentration, Zn speciation in soils from the impacted landscape was characterized using X-ray absorption fine structure, X-ray fluorescence mapping and µ-X-ray absorption near edge structure. Beginning with speciation at a micro-scale and transitioning to bulk speciation was able to determine Zn speciation and link it to two distinct landform characteristics: (1) soils stabilized by metal tolerant grass species—in which secondary adsorption species of Zn (i.e., sorbed to Mn and Si oxides, and as outer-sphere adsorbed Zn) were found to be more abundant; and (2) eroded, sparsely vegetated soils in mid to upper slope positions that were dominated almost entirely by smelter derived Zn minerals, specifically Franklinite (ZnFe2O4).
The long-term effect of liming on pH and Zn speciation was examined using field sites limed by a community led organization over a ten year period. Upon liming to a pH of 4 to 4.5, the eroded, sparsely vegetated soils where found to form a Zn-Al-Hydroxy Interlayer Material (HIM) co-precipitate, reducing the phytotoxicity of both Zn and Al and allowed for boreal forest vegetation to recovery quickly in these areas. The grass stabilized soils experienced a steady pH increase, as compared to a sporadic pH increase in the heavily eroded soils, as the buffering capacity was overcome allowing for a transition between multiple adsorption species based upon the point of zero charge of reactive soil elements. Ultimately reaching a near neutral pH after ten years, this allowed for the formation of stable Zn-Al-layered double hydroxide (LDH) soil precipitates and significantly reduced concentrations of plant available Zn.
|
Page generated in 0.1152 seconds