• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of proteoglycan aggregate degradation in cytokine-stimulated cartilage

Durigova, Michaela. January 2009 (has links)
Aggrecan is one of the most important structural components of the extracellular matrix (ECM) of articular cartilage, where it contributes to the hydration of the tissue and its ability to resist compressive loads during joint movement. Increased aggrecan degradation and loss occurs in joint diseases and is thought to be mediated by enzymes such as the matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS). It has also been proposed that aggrecan release from the cartilage can be mediated by a non-proteolytic mechanism which involves the degradation of hyaluronan (RA) to which the aggrecan is bound. As aggrecan degradation and loss is known to be induced by pro-inflammatory cytokines, IL-1, TNFalpha, IL-6, IL-17 and OSM were used to investigate the mechanisms involved in proteoglycan catabolism in organ cultures of bovine articular cartilage. Irrespective of the cytokine, all aggrecan fragments generated were characteristic of aggrecanase action, and no additional aggrecan-degrading enzymatic activity was detected. In the presence of OSM, more rapid aggrecan release was observed, due to both proteolysis and fragmentation of HA by hyaluronidase activity. Moreover, addition of OSM resulted in the cleavage of aggrecan at a non-canonical aggrecanase site near its carboxy-terminal globular domain. Such cleavage could be reproduced in vitro by the action of either ADAMTS-4 or ADAMTS-5. Gene expression analysis revealed that both aggrecanases were highly induced by the cytokines, and while ADAMTS-4 was the major aggrecanase to be stimulated in all conditions, ADAMTS-5 remains the predominant aggrecanase to be expressed in cartilage. Thus, the present study shows that aggrecanase activity is primarily responsible for aggrecan degradation in the early stages of cytokine stimulation, and that in the presence of OSM, aggrecanase substrate specificity can be differentially modulated and hyaluronidase-mediated RA degradation can be induced.
2

Mechanisms of proteoglycan aggregate degradation in cytokine-stimulated cartilage

Durigova, Michaela. January 2009 (has links)
No description available.

Page generated in 0.1113 seconds