1 |
Profil spectral des raies d’absorption de la vapeur d'eau pour l'étude de l'atmosphère de la terre par télédétection / Theoretical and experimental of the spectral shape of water vapor absorption lines for remote sensing applicationNgo, Ngoc Hoa 15 October 2013 (has links)
Le travail présenté dans ce mémoire de thèse est consacré aux études théorique et expérimentale du profil spectral des raies d'absorption de la vapeur d'eau, une espèce clé dans l'atmosphère de la Terre. Le but de ce travail est de proposer une approche générale permettant de modéliser précisément la forme des raies d'absorption de H2O.La première partie de cette thèse porte sur la mesure des paramètres spectroscopiques de H2O pur et de H2O dans l'air dans l'infrarouge proche en utilisant un système de diode laser à cavité externe et la technique de spectroscopie d'absorption directe. Différents modèles de profil spectral existants sont utilisés pour ajuster les spectres mesurés. Les résultats montrent que le profil de Voigt habituel mène à de larges différences avec les spectres mesurés et qu'il est nécessaire de prendre en compte à la fois les changements de vitesse et les dépendances en vitesse des paramètres collisionnels pour décrire correctement le profil spectral. Dans la deuxième partie, une nouvelle modélisation du profil spectral de H2O est proposée. Le modèle développé est basé sur des résultats obtenus à partir de simulations de dynamique moléculaire et de calculs semi-classiques. Ce modèle tient compte à la fois des effets de changements de vitesse dus aux collisions et des dépendances en vitesse des paramètres collisionnels. En particulier, nous avons montré qu'il est important, pour H2O, de prendre en compte la corrélation entre les changements de la vitesse et ceux de l'état interne. Le modèle proposé est en très bon accord avec des spectres de H2O (H2O/H2O, H2O/N2 et H2O/Air) mesurés par différentes techniques et pour de larges gammes de pression et domaine spectral. En raison de sa complexité et de son temps de calcul élevé, l'utilisation du nouveau modèle est difficile dans des applications pratiques telles que les calculs de transfert radiatif. Dans la troisième partie, ce nouveau modèle est donc utilisé comme une référence afin de tester les différentes approches simplifiées existantes. Les résultats montrent que le modèle pCqSDHC (partially-Correlated quadratique-Speed-Dependent Hard-Collision) est le plus adapté pour modéliser le profil spectral des raies isolées de H2O, mais aussi d'autres systèmes moléculaire. Il permet en effet un très bon compromis entre la précision et l'efficacité demandée dans des applications pratiques / This work is devoted to a theoretical and experimental study of the spectral shape of isolated transitions of water vapor, a key species of the Earth atmosphere. The purpose of these studies is to develop an accurate line-shape model taking into account different velocity effects affecting the spectral shape of H2O lines. In the first part of this thesis, spectroscopic line parameters of pure H2O and H2O diluted in air have been measured using an external cavity diode laser and a long-path absorption cell. Different existing line-shape models have been used to adjust the measurements. The results show that the widely-used Voigt profile leads to large differences with measured spectra and that it is necessary to take into account both the velocity changes and speed dependence effects to correctly model H2O line shapes. The second part of this work is devoted to the development of a new line-shape model, based on the results obtained from classical molecular dynamics simulations and semi-classical calculations. Both collision-induced velocity changes and speed dependence effects are taken into account by this model. Furthermore, we also show that the correlation between velocity changes and internal-state changes has to be accounted for to correctly describe H2O line shapes. Spectra of pure H2O, H2O in N2 and in air, calculated with the new model are in excellent agreement with those measured by different techniques and for large ranges of pressure and spectral domain. Its complexity and its large computational cost make the new model difficult to use for practical applications such as atmospheric radiative transfer. It is thus used, in the third part, as a “benchmark” in order to test different simplified line profiles and then to choose the proper one to fit measured spectra and to be used for atmospheric spectra prediction. The results show that the pCqSDHC (partially-Correlated quadratic-Speed-Dependent Hard-Collision) model is the most adapted to represent the line shape of H2O, but also of other molecules. This model offers a very good compromise between accuracy and computation efficiency and can be easily used in different practical applications
|
Page generated in 0.1252 seconds