• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting surfacing internal erosion in moraine core dams

Rönnqvist, Hans January 2010 (has links)
<p>Dams that comprise broadly and widely graded glacial materials, such as moraines, have been found to be susceptible to internal erosion, perhaps more than dams of other soil types. Internal erosion washes out fine-grained particles from the filling material; the erosion occurs within the material itself or at an interface to another dam zone, depending on the mode of initiation. Whether or not internal erosion proceeds depend on the adequacy of the filter material. If internal erosion is allowed, it may manifest itself as sinkholes on the crest, increased leakage and muddy seepage once it surfaces, which here is called surfacing internal erosion (i.e. internal erosion in the excessive erosion or continuation phase). In spite of significant developments since the 1980s in the field of internal erosion assessment, the validity of methods developed by others on broadly graded materials are still less clear because most available criteria are based on tests of narrowly graded granular soils. This thesis specifically addresses dams that are composed of broadly graded glacial soils and investigates typical indicators, signs and behaviors of internal erosion prone dams. Based on a review of 90+ existing moraine core dams, which are located mainly in Scandinavia as well as North America and Australia/New Zealand, this thesis will show that not only the filter’s coarseness needs to be reviewed when assessing the potential for internal erosion to surface (i.e., erosion in the excessive or continuing phase); in addition, the grading stability of the filter and the core material as well as non-homogeneities that are caused by filter segregation need to be studied. Cross-referencing between these aspects improves the assessment of potential for internal erosion in dams of broadly graded soils and furthermore it provides aid-to-judgment.</p> / QC 20100715
2

Predicting surfacing internal erosion in moraine core dams

Rönnqvist, Hans January 2010 (has links)
Dams that comprise broadly and widely graded glacial materials, such as moraines, have been found to be susceptible to internal erosion, perhaps more than dams of other soil types. Internal erosion washes out fine-grained particles from the filling material; the erosion occurs within the material itself or at an interface to another dam zone, depending on the mode of initiation. Whether or not internal erosion proceeds depend on the adequacy of the filter material. If internal erosion is allowed, it may manifest itself as sinkholes on the crest, increased leakage and muddy seepage once it surfaces, which here is called surfacing internal erosion (i.e. internal erosion in the excessive erosion or continuation phase). In spite of significant developments since the 1980s in the field of internal erosion assessment, the validity of methods developed by others on broadly graded materials are still less clear because most available criteria are based on tests of narrowly graded granular soils. This thesis specifically addresses dams that are composed of broadly graded glacial soils and investigates typical indicators, signs and behaviors of internal erosion prone dams. Based on a review of 90+ existing moraine core dams, which are located mainly in Scandinavia as well as North America and Australia/New Zealand, this thesis will show that not only the filter’s coarseness needs to be reviewed when assessing the potential for internal erosion to surface (i.e., erosion in the excessive or continuing phase); in addition, the grading stability of the filter and the core material as well as non-homogeneities that are caused by filter segregation need to be studied. Cross-referencing between these aspects improves the assessment of potential for internal erosion in dams of broadly graded soils and furthermore it provides aid-to-judgment. / QC 20100715

Page generated in 0.1601 seconds