1 |
Molecular Phylogeography and Species Discrimination of Freshwater <em>Cladophora</em> (Cladophorales, Chlorophyta) in North AmericaRoss, Sara J. January 2006 (has links)
<em>Cladophora</em> is a widespread freshwater filamentous cholorophyte genus and is frequently observed in eutrophic waters where it can produce large nuisance blooms. These blooms can have direct impacts on water intake for power generation, irrigation canals and can be aesthetically unpleasant. Much of the ecological and physiological studies on <em>Cladophora</em> have assumed that the populations of this genus in North America belong to the species <em>Cladophora glomerata</em>. However, this has never been tested despite that it is well documented that identifying freshwater <em>Cladophora</em> to the species level is difficult due morphological variability under different ecological conditions. In addition, the species epithets for freshwater <em>Cladophora</em> are based on European collections and it is not clear if these should be applied to North America. This study examines approximately 40 collections of <em>Cladophora</em> from the Laurentian Great Lakes and 43 from various locations in North America ranging from the Northwest Territories to Puerto Rico. Initially we determined the nucleotide sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal cistron and observed sequence divergence to be low (0-3%), demonstrating an inability for this marker to resolve species delineation as divergence of this region was low. Amplification of the inter-simple sequence repeat (ISSR) regions were used to analyze microsatellite motif frequency throughout the genome to evaluate the biogeography relationships, including diversity, of freshwater <em>Cladophora</em> sp. five different primers were used on 70 individuals. UPGMA analyses of the presence/absence of bands demonstrate that each of the Great Lake populations separate into groups according to the Lake they were initially sampled from. However, collections from North America are highly variable and do not form well supported biogeographic clades. In addition, these collections appear to be distinct from type cultures of freshwater <em>Cladophora</em> from Europe. Supplementary morphological analysis using suggested taxonomically valid criterion (length and diameter of main axis, ultimate branch, and apical cell) none were able to differentiate Great Lake populations.
|
2 |
Molecular Phylogeography and Species Discrimination of Freshwater <em>Cladophora</em> (Cladophorales, Chlorophyta) in North AmericaRoss, Sara J. January 2006 (has links)
<em>Cladophora</em> is a widespread freshwater filamentous cholorophyte genus and is frequently observed in eutrophic waters where it can produce large nuisance blooms. These blooms can have direct impacts on water intake for power generation, irrigation canals and can be aesthetically unpleasant. Much of the ecological and physiological studies on <em>Cladophora</em> have assumed that the populations of this genus in North America belong to the species <em>Cladophora glomerata</em>. However, this has never been tested despite that it is well documented that identifying freshwater <em>Cladophora</em> to the species level is difficult due morphological variability under different ecological conditions. In addition, the species epithets for freshwater <em>Cladophora</em> are based on European collections and it is not clear if these should be applied to North America. This study examines approximately 40 collections of <em>Cladophora</em> from the Laurentian Great Lakes and 43 from various locations in North America ranging from the Northwest Territories to Puerto Rico. Initially we determined the nucleotide sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal cistron and observed sequence divergence to be low (0-3%), demonstrating an inability for this marker to resolve species delineation as divergence of this region was low. Amplification of the inter-simple sequence repeat (ISSR) regions were used to analyze microsatellite motif frequency throughout the genome to evaluate the biogeography relationships, including diversity, of freshwater <em>Cladophora</em> sp. five different primers were used on 70 individuals. UPGMA analyses of the presence/absence of bands demonstrate that each of the Great Lake populations separate into groups according to the Lake they were initially sampled from. However, collections from North America are highly variable and do not form well supported biogeographic clades. In addition, these collections appear to be distinct from type cultures of freshwater <em>Cladophora</em> from Europe. Supplementary morphological analysis using suggested taxonomically valid criterion (length and diameter of main axis, ultimate branch, and apical cell) none were able to differentiate Great Lake populations.
|
3 |
Using Barcode Similarity Groups to Organize Cortinarius SequencesHarrower, Emma 01 January 2011 (has links)
To improve fungal identification using a single DNA sequence, I introduce the Barcode Similarity Group (BSG) defined as a cluster of sequences that share greater than or equal to a threshold amount of genetic similarity with each other. As a test case, I created 393 BSGs from 2463 Cortinarius ITS sequences using a 94% similarity cut-off value in DOTUR. Some BSGs may contain multiple species. The BSG database was used to label environmental sequences, find misidentified or mislabeled sequences, and find potential cryptic species and novel species. Expert taxonomists will be needed to perform detailed morphological and phylogenetic studies to identify the individual species within each BSG. The main advantage of using BSGs is that it clusters together sequences using total genetic relatedness and does not rely on any taxonomy for identification. A website was created where the RDP Classifier is used to classify a query sequence into a BSG.
|
4 |
Using Barcode Similarity Groups to Organize Cortinarius SequencesHarrower, Emma 01 January 2011 (has links)
To improve fungal identification using a single DNA sequence, I introduce the Barcode Similarity Group (BSG) defined as a cluster of sequences that share greater than or equal to a threshold amount of genetic similarity with each other. As a test case, I created 393 BSGs from 2463 Cortinarius ITS sequences using a 94% similarity cut-off value in DOTUR. Some BSGs may contain multiple species. The BSG database was used to label environmental sequences, find misidentified or mislabeled sequences, and find potential cryptic species and novel species. Expert taxonomists will be needed to perform detailed morphological and phylogenetic studies to identify the individual species within each BSG. The main advantage of using BSGs is that it clusters together sequences using total genetic relatedness and does not rely on any taxonomy for identification. A website was created where the RDP Classifier is used to classify a query sequence into a BSG.
|
5 |
Evaluation of Downy Mildew (Peronospora farinosa f.sp. chenopodii) Resistance among Quinoa Genotypes and Investigation of P. farinosa Growth using Scanning Electron MicroscopyKitz, Leilani 15 July 2008 (has links) (PDF)
Quinoa (Chenopodium quinoa Willd.) is a pseudocereal native to the Andean region of South America and a staple crop for subsistence farmers in the altiplano of Bolivia and Peru. Downy mildew is the most significant disease of quinoa caused by the pathogen Peronospora farinosa f.sp. chenopodii Byford. This disease greatly impacts quinoa crops with yield losses up to 99%. As fungicides are expensive for farmers, the development of resistant cultivars appears to be the most efficient means for controlling downy mildew. The quinoa germplasm bank contains high amounts of genetic diversity, some of which exhibit mildew resistance. Methods for evaluating mildew severity are important for finding resistant genotypes that are useful in breeding programs. The main objectives of this study were to evaluate and investigate downy mildew resistance in quinoa through several different methods. A simple inoculation method was developed for downy mildew disease assessment by placing a damp piece of cheesecloth on a leaf, pipetting a known spore solution onto the cloth, and subjecting the plants to specific humidity cycles in a growth chamber. After inoculation of five quinoa-breeding lines in a growth chamber, accession 0654 was found to be the most resistant, while genotypes NL6 and Sayana showed moderate resistance. Each of these genotypes displayed some potential for resistance breeding programs. Investigation of the growth and development of P. farinosa through resistant and susceptible quinoa genotypes revealed fewer sporangiophores, hyphal strands, and haustoria among leaf tissues of accession 0654 than in the susceptible Chucapaca cultivar. Peronospora farinosa growth was detected in leaf, petiole, and stem tissues with polymerase chain reaction (PCR) using ITSP primers designed from the internal transcribed spacer (ITS) region of the pathogen. Scanning electron microscopy (SEM) also revealed that P. farinosa penetrated stomata via appressoria, secreted extracellular matrices during sporangia germination, grew intercellularly in leaf and petiole tissues, and exited leaf tissue through stomata. Future research requiring knowledge of resistant quinoa genotypes, P. farinosa growth and development, or inoculation methods for large numbers of small quinoa plants would benefit from this report.
|
Page generated in 0.1144 seconds