• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle des récepteurs glutamatergiques dans l'activité épileptiforme des interneurones inhibiteurs de l'hippocampe

Sanon, Nathalie T. 12 1900 (has links)
Les patients atteints d'épilepsie du lobe temporal (TLE) ainsi que les rats injectés à l'acide kaïnique (KA) exhibent des patrons pathophysiologiques similaires de crises, de sclérose de l'hippocampe et de perte de certains types neuronaux. Parmi les cellules atteintes dans le modèle KA du TLE on retrouve certains interneurones inhibiteurs du CA1. En effet, certains interneurones des couches oriens et alveus (O/A-IN) meurent suite à une injection de KA chez le rat, contrairement aux interneurones à la bordure des couches radiatum et lacunosum/moleculare (R/LM-IN) de la même région. Bien que cette perte soit empêchée par des antagonistes des récepteurs glutamatergiques métabotropes de groupe I (mGluR1/5), la cause de cette perte sélective des O/A-INs reste à être précisée. Au cours des travaux de cette thèse, nous avons effectué des enregistrements de patch-clamp en configuration cellule-entière en modes courant- et voltage-imposé couplés à l'imagerie calcique pour étudier les causes de la vulnérabilité sélective des O/A-INs dans ce modèle. Dans un premier temps, nous avons évalué les effets d'une application aiguë de KA sur les propriétés membranaires et calciques pour voir s'il y avait des différences entre les O/A-INs et R/LM-INs qui pourraient expliquer la vulnérabilité. Nos résultats montrent que les dépolarisations et variations de résistance d'entrée ainsi que les augmentations de calcium intracellulaire, dépendantes principalement des récepteurs -amino-3-hydroxy-5-methyl-4-isoxasole propionic acid (AMPA), sont similaires entre les deux types d'interneurones suite à des applications aigües de KA. Ceci indique que l'effet aigu du KA sur les interneurones ne serait pas la cause de la vulnérabilité des O/A-INs. Dans un second temps nous avons comparé l'implication des sous-types de récepteurs mGluR1 et 5 dans l'activité épileptiforme des deux types d'interneurones évoquée dans un modèle de tranche désinhibée. Dans ce cas, nos données montrent un rôle important des mGluR1 et 5 activés synaptiquement lors des décharges épileptiformes et ce, de manière spécifique aux O/A-INs. Les courants synaptiques sous-tendant ces décharges impliquent des récepteurs ionotropes et métabotropes du glutamate. En présence d'antagonistes des récepteurs ionotropes glutamatergiques, les courants synaptiques sont biphasiques et formés de composantes rapide et lente. Les récepteurs mGluR1 et 5 sont différemment impliqués dans ces composantes: les mGluR5 étant impliqués dans les composantes rapide et lente, et les mGluR1 que dans la composante lente. Ces résultats indiquent que les mGluR1 et 5 contribuent différemment à l'activité épileptiforme, et spécifiquement dans les O/A-INs, et pourraient donc être impliqués dans la vulnérabilité sélective de ces interneurones dans le modèle KA. / Temporal lobe epilepsy (TLE) patients, as well as kainic acid (KA)-treated rodents, display similar pathophysiological patterns of behavioural seizures, hippocampal sclerosis and loss of certain neuronal types in the hippocampus. Among the cell types selectively vulnerable in the experimental KA model of TLE are certain inhibitory interneurons of the CA1 hippocampal region. Specifically, interneurons located in the oriens and alveus layers (O/A-IN) are lost following KA injections, whereas interneurons found in the radiatum/lacunosum-moleculare layers (R/LM-IN) are resistant. Although it has been shown that the group I metabotropic glutamate receptor (mGluR1/5) inhibitors can block this cell loss seen in the KA model, the precise cause of the selective O/A-IN vulnerability remains to be clarified. In this thesis, we have performed whole-cell patch-clamp recordings with simultaneous calcium imaging in an effort to elucidate the cause of the selective vulnerability of O/A-INs. We first determined the effects of acute KA applications on membrane properties and intracellular calcium rises in hippocampal slices to see if they might be different between O/A-INs and R/LM-INs. Our results reveal similar -amino-3-hydroxy-5-methyl-4-isoxasole propionic acid (AMPA) receptor dependent membrane depolarizations, input resistance variations and calcium reponses in these cells following KA applications, suggesting that acute KA actions may not cause the selective vulnerability of O/A-INs. Furthermore, we evaluated the contribution of mGluR1/5 to epileptiform discharges evoked in a disinhibited slice model, comparing responses between O/A-INs and R/LM-INs. Our data show an important role of synaptically activated mGluR1/5 during epileptiform discharges specifically in O/A-INs. In addition we show that the synaptic currents underlying these discharges involve ionotropic and metabotropic glutamate receptors. In the presence of antagonists of ionotropic glutamate receptors, synaptic currents are biphasic and composed of fast and slow components. mGluR1 and mGluR5 are involved differently in these components with mGluR5 implicated in fast and slow components and mGluR1 in the slow component only. Our findings therefore suggest that mGluR1 and 5 contribute differently to epileptiform discharges, and do so specifically in O/A-INs, suggesting that their activation may contribute to the selective vulnerability of these interneurons in the KA model of TLE.
2

Rôle des récepteurs glutamatergiques dans l'activité épileptiforme des interneurones inhibiteurs de l'hippocampe

Sanon, Nathalie T. 12 1900 (has links)
Les patients atteints d'épilepsie du lobe temporal (TLE) ainsi que les rats injectés à l'acide kaïnique (KA) exhibent des patrons pathophysiologiques similaires de crises, de sclérose de l'hippocampe et de perte de certains types neuronaux. Parmi les cellules atteintes dans le modèle KA du TLE on retrouve certains interneurones inhibiteurs du CA1. En effet, certains interneurones des couches oriens et alveus (O/A-IN) meurent suite à une injection de KA chez le rat, contrairement aux interneurones à la bordure des couches radiatum et lacunosum/moleculare (R/LM-IN) de la même région. Bien que cette perte soit empêchée par des antagonistes des récepteurs glutamatergiques métabotropes de groupe I (mGluR1/5), la cause de cette perte sélective des O/A-INs reste à être précisée. Au cours des travaux de cette thèse, nous avons effectué des enregistrements de patch-clamp en configuration cellule-entière en modes courant- et voltage-imposé couplés à l'imagerie calcique pour étudier les causes de la vulnérabilité sélective des O/A-INs dans ce modèle. Dans un premier temps, nous avons évalué les effets d'une application aiguë de KA sur les propriétés membranaires et calciques pour voir s'il y avait des différences entre les O/A-INs et R/LM-INs qui pourraient expliquer la vulnérabilité. Nos résultats montrent que les dépolarisations et variations de résistance d'entrée ainsi que les augmentations de calcium intracellulaire, dépendantes principalement des récepteurs -amino-3-hydroxy-5-methyl-4-isoxasole propionic acid (AMPA), sont similaires entre les deux types d'interneurones suite à des applications aigües de KA. Ceci indique que l'effet aigu du KA sur les interneurones ne serait pas la cause de la vulnérabilité des O/A-INs. Dans un second temps nous avons comparé l'implication des sous-types de récepteurs mGluR1 et 5 dans l'activité épileptiforme des deux types d'interneurones évoquée dans un modèle de tranche désinhibée. Dans ce cas, nos données montrent un rôle important des mGluR1 et 5 activés synaptiquement lors des décharges épileptiformes et ce, de manière spécifique aux O/A-INs. Les courants synaptiques sous-tendant ces décharges impliquent des récepteurs ionotropes et métabotropes du glutamate. En présence d'antagonistes des récepteurs ionotropes glutamatergiques, les courants synaptiques sont biphasiques et formés de composantes rapide et lente. Les récepteurs mGluR1 et 5 sont différemment impliqués dans ces composantes: les mGluR5 étant impliqués dans les composantes rapide et lente, et les mGluR1 que dans la composante lente. Ces résultats indiquent que les mGluR1 et 5 contribuent différemment à l'activité épileptiforme, et spécifiquement dans les O/A-INs, et pourraient donc être impliqués dans la vulnérabilité sélective de ces interneurones dans le modèle KA. / Temporal lobe epilepsy (TLE) patients, as well as kainic acid (KA)-treated rodents, display similar pathophysiological patterns of behavioural seizures, hippocampal sclerosis and loss of certain neuronal types in the hippocampus. Among the cell types selectively vulnerable in the experimental KA model of TLE are certain inhibitory interneurons of the CA1 hippocampal region. Specifically, interneurons located in the oriens and alveus layers (O/A-IN) are lost following KA injections, whereas interneurons found in the radiatum/lacunosum-moleculare layers (R/LM-IN) are resistant. Although it has been shown that the group I metabotropic glutamate receptor (mGluR1/5) inhibitors can block this cell loss seen in the KA model, the precise cause of the selective O/A-IN vulnerability remains to be clarified. In this thesis, we have performed whole-cell patch-clamp recordings with simultaneous calcium imaging in an effort to elucidate the cause of the selective vulnerability of O/A-INs. We first determined the effects of acute KA applications on membrane properties and intracellular calcium rises in hippocampal slices to see if they might be different between O/A-INs and R/LM-INs. Our results reveal similar -amino-3-hydroxy-5-methyl-4-isoxasole propionic acid (AMPA) receptor dependent membrane depolarizations, input resistance variations and calcium reponses in these cells following KA applications, suggesting that acute KA actions may not cause the selective vulnerability of O/A-INs. Furthermore, we evaluated the contribution of mGluR1/5 to epileptiform discharges evoked in a disinhibited slice model, comparing responses between O/A-INs and R/LM-INs. Our data show an important role of synaptically activated mGluR1/5 during epileptiform discharges specifically in O/A-INs. In addition we show that the synaptic currents underlying these discharges involve ionotropic and metabotropic glutamate receptors. In the presence of antagonists of ionotropic glutamate receptors, synaptic currents are biphasic and composed of fast and slow components. mGluR1 and mGluR5 are involved differently in these components with mGluR5 implicated in fast and slow components and mGluR1 in the slow component only. Our findings therefore suggest that mGluR1 and 5 contribute differently to epileptiform discharges, and do so specifically in O/A-INs, suggesting that their activation may contribute to the selective vulnerability of these interneurons in the KA model of TLE.
3

Régulation de la mémoire par la plasticité des interneurones inhibiteurs de l’hippocampe

Honoré, Ève 08 1900 (has links)
La mémoire explicite émerge de l’acheminement approprié de l’information à travers les circuits hippocampiques, et la formation d’un engramme qui encode cette mémoire. Les interneurones inhibiteurs régulent le flot d’information à travers ce réseau par leur contrôle dynamique des différents compartiments des cellules principales, ce qui contribue probablement à la formation de l’engramme. À cet égard, les interneurones somatostatinergiques (SOM-INs) et parvalbuminergiques (PV-INs), représentant les deux groupes majeurs de neurones inhibiteurs de l’hippocampe, sont particulièrement intéressants, car ils démontrent plusieurs formes de plasticité à long terme. Cette thèse a pour objectif d’étudier le rôle spécifique des SOM-INs et PV-INs de l’aire CA1 ainsi que leurs plasticités à long terme dans le contrôle dynamique des réseaux de l’hippocampe et la formation de la mémoire. Les SOM-INs expriment une potentialisation à long terme (PLT) à leurs synapses excitatrices venant des cellules pyramidales locales. Cette PLT a pour conséquence l’augmentation de l’inhibition des cibles des SOM-INs, les cellules pyramidales et interneurones locaux, ce qui contribue à la métaplasticité des circuits synaptiques de CA1. La PLT des SOM-INs contribue à la consolidation de la mémoire de peur contextuelle et la mémoire spatiale aversive. Cependant, nous ne savons pas si : 1) cette PLT est suffisante pour la formation de ces types de mémoire, ni si elle est impliquée dans la formation de la mémoire non aversive 2) si cette PLT est induite lors de l’acquisition ou de la consolidation de ces mémoires. Pour l’étude de la PLT des SOM-INs, nous avons utilisé l’optogénétique afin d’avoir un contrôle sur la localisation et le moment des modifications de l’activité des SOM-INs. Nous avons montré que l’activité de ces interneurones était nécessaire durant l’apprentissage de la mémoire de peur contextuelle et de la mémoire spatiale épisodique non aversive. Nous avons établi un protocole de stimulation optogénétique capable d’induire in vitro une PLT aux synapses des cellules pyramidales de CA1 sur les SOM-INs. Nous avons démontré que cette PLT était nécessaire et suffisante pour moduler les réseaux synaptiques du CA1 in vitro, ainsi que les deux types de 3 mémoires étudiées. De plus, nous avons démontré de façon directe que l’induction de cette PLT induisait la synthèse protéique via l’activation de mTORC1 dans les SOM-INs in vitro. Les PV-INs expriment également une PLT à leurs synapses excitatrices venant majoritairement des cellules pyramidales de l’aire CA3 à la suite d’un conditionnement à la peur, qui est nécessaire à la consolidation de cette mémoire. In vitro, la stimulation haute fréquence des afférences de CA3 entraine une PLT de l’excitabilité intrinsèque des PV-INs. Cependant, nous ne savons pas si cette forme de plasticité est également nécessaire pour la mémoire de peur contextuelle. Pour l’étude de la PLT de l’excitabilité intrinsèque des PV-INs, nous avons d’abord établi qu’une perte de fonction hétérozygote et homozygote de mTORC1 dans les PV-INs ne change pas les propriétés de décharge de base de ces neurones, mais diminue la fréquence d’une décharge répétée et bloque l’induction de la PLT de l’excitabilité intrinsèque. De plus, nous avons montré que cette forme de PLT des PV-INs n’est pas nécessaire à la consolidation ni la discrimination de la mémoire de peur contextuelle. En conclusion, ces travaux suggèrent que la plasticité synaptique des interneurones étudiés est nécessaire à la formation de la mémoire explicite. Celle des SOM-INs est nécessaire durant l’apprentissage, celle des PV-INs durant la consolidation. L’ensemble de nos résultats mettent en évidence les rôles spécifiques des divers types de plasticité des interneurones inhibiteurs dans les fonctions mnésiques et soulignent leur rôle critique dans la régulation de la mémoire. / Explicit memory emerges from the proper routing of information through hippocampal circuits, and the formation of an engram encoding this memory. Inhibitory interneurons regulate the flow of information in these networks by their dynamic control of the different compartments of pyramidal cells, which is likely to contribute to engram formation. In this regard, somatostatinergic (SOM-INs) and parvalbuminergic (PV-INs) interneurons, representing major groups of hippocampal inhibitory neurons, are particularly interesting because of the multiple forms of longterm plasticity they demonstrate. The objective of this thesis is to study the specific roles of SOM-INs and PV-INs from hippocampal CA1 area, as well as their long-term plasticity in the dynamic control of the network and memory formation. SOM-INs demonstrate long-term potentiation (LTP) at their excitatory synapses coming from local pyramidal cells. This LTP results in increased inhibition of SOM-INs targets, the local pyramidal cells and interneurons, which contributes to the metaplasticity of CA1 synaptic circuits. SOM-IN LTP is also involved in contextual fear memory and aversive spatial memory consolidation. However, it remains to be determined: 1) if this LTP is sufficient for the formation of these memory types, and if it is implicated in non-aversive memory formation; 2) if this LTP is induced during the acquisition or consolidation of these memories. For studying SOM-IN LTP, we used optogenetics to control the place and time of SOM-IN activity. We showed that the activity of these interneurons is necessary during learning of contextual fear memory and non-aversive spatial episodic memory. We established an optogenetic stimulation protocol enabling us to induce LTP at synapses from CA1 pyramidal cells to SOM-INs in vitro. We demonstrated that this LTP is necessary and sufficient to modulate CA1 synaptic networks in vitro, as well as the two memory types studied. Moreover, we demonstrated a direct link between this LTP and mTORC1-dependent protein synthesis in SOM-INs in vitro. PV-INs also express LTP at their excitatory synapses mainly coming from CA3 pyramidal cells after contextual fear conditioning, necessary for the consolidation of this memory. High frequency stimulation of CA3 afferents leads to PV-IN LTP of intrinsic excitability in vitro. Yet, we don’t know if this form of plasticity is also necessary for contextual fear memory. To study PV-INs LTP of intrinsic excitability, we established that heterozygous or homozygous mTORC1 loss of function in PV-INs did not change basic firing properties of these neurons but decreased repeated firing frequency and blocked LTP of intrinsic excitability. Besides, we showed that this form of PV-IN LTP is not necessary for the consolidation or discrimination of contextual fear memory. In conclusion, these works suggest that synaptic plasticity of the studied interneurons is necessary for explicit memory formation. SOM-IN synaptic LTP is necessary during learning, while PV-INs LTP is necessary during consolidation. Overall, our results highlight the specific roles of the various inhibitory interneuron plasticity in memory functions and emphasize their critical role in the regulation of memory.

Page generated in 0.1242 seconds