1 |
A Bootstrap Application in Adjusting Asymptotic Distribution for Interval-Censored DataChung, Yun-yuan 20 June 2007 (has links)
Comparison of two or more failure time distributions based on interval-censored data is tested by extension of log-rank test proposed by Sun (1996, 2001, 2004). Furthermore, Chang (2004) verified that the proposed test statistics are approximately chi-cquare with degrees of freedom p-1 after constants factor adjustment which can be obtained from simulations. In this paper we approach in a different way to estimate the adjustment factor of a given interval-censored data by applying the bootstrap technique to the test statistics. Simulation results indicate that the bootstrap technique performs well on those test statistics except the one proposed in 1996. By using chi-square goodness of fit test, we found that Sun's test in 1996 is significantly far from any chi-square.
|
2 |
The nonparametric least-squares method for estimating monotone functions with interval-censored observationsCheng, Gang 01 May 2012 (has links)
Monotone function, such as growth function and cumulative distribution function, is often a study of interest in statistical literature. In this dissertation, we propose a nonparametric least-squares method for estimating monotone functions induced from stochastic processes in which the starting time of the process is subject to interval censoring. We apply this method to estimate the mean function of tumor growth with the data from either animal experiments or tumor screening programs to investigate tumor progression. In this type of application, the tumor onset time is observed within an interval. The proposed method can also be used to estimate the cumulative distribution function of the elapsed time between two related events in human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) studies, such as HIV transmission time between two partners and AIDS incubation time from HIV infection to AIDS onset. In these applications, both the initial event and the subsequent event are only known to occur within some intervals. Such data are called doubly interval-censored data. The common property of these stochastic processes is that the starting time of the process is subject to interval censoring.
A unified two-step nonparametric estimation procedure is proposed for these problems. In the first step of this method, the nonparametric maximum likelihood estimate (NPMLE) of the cumulative distribution function for the starting time of the stochastic process is estimated with the framework of interval-censored data. In the second step, a specially designed least-squares objective function is constructed with the above NPMLE plugged in and the nonparametric least-squares estimate (NPLSE) of the mean function of tumor growth or the cumulative distribution function of the elapsed time is obtained by minimizing the aforementioned objective function. The theory of modern empirical process is applied to prove the consistency of the proposed NPLSE. Simulation studies are extensively carried out to provide numerical evidence for the validity of the NPLSE. The proposed estimation method is applied to two real scientific applications. For the first application, California Partners' Study, we estimate the distribution function of HIV transmission time between two partners. In the second application, the NPLSEs of the mean functions of tumor growth are estimated for tumors with different stages at diagnosis based on the data from a cancer surveillance program, the SEER program. An ad-hoc nonparametric statistic is designed to test the difference between two monotone functions under this context. In this dissertation, we also propose a numerical algorithm, the projected Newton-Raphson algorithm, to compute the non– and semi-parametric estimate for the M-estimation problems subject to linear equality or inequality constraints. By combining the Newton-Raphson algorithm and the dual method for strictly convex quadratic programming, the projected Newton-Raphson algorithm shows the desired convergence rate. Compared to the well-known iterative convex minorant algorithm, the projected Newton-Raphson algorithm achieves much quicker convergence when computing the non- and semi-parametric maximum likelihood estimate of panel count data.
|
3 |
A study of statistical distribution of a nonparametric test for interval censored dataChang, Ping-chun 05 July 2005 (has links)
A nonparametric test for the interval-censored failure time data is proposed in determining whether p lifetime populations come from the same distribution. For the comparison problem based on interval-censored failure time data, Sun proposed some nonparametric test procedures in recent year. In this paper, we present simulation procedures to verify the test proposed by Sun. The simulation results indicate that the proposed test is not
approximately Chisquare distribution with degrees of freedom p-1 but Chisquare distribution with degrees of freedom p-1 times a constant.
|
4 |
On the consistency of a simulation procedure and the construction of a non-parametric test for interval-censored dataSen, Ching-Fu 14 June 2001 (has links)
In this paper, we prove that the simulation method for
interval-censored data proposed by Fay (1999) is consistent in the
sense that if we select a sample, then the estimate obtained from
Turnbulls (1974) EM algorithm will converge to the
true parameter when the sample size tends to infinity. We also
propose a non-parametric rank test for interval-censored data to
determine whether two populations come from the same distribution.
Simulation result shows that the proposed
test statistics performs pretty satisfactory.
|
5 |
Survival analysis issues with interval-censored dataOller Piqué, Ramon 30 June 2006 (has links)
L'anàlisi de la supervivència s'utilitza en diversos àmbits per tal d'analitzar dades que mesuren el temps transcorregut entre dos successos. També s'anomena anàlisi de la història dels esdeveniments, anàlisi de temps de vida, anàlisi de fiabilitat o anàlisi del temps fins a l'esdeveniment. Una de les dificultats que té aquesta àrea de l'estadística és la presència de dades censurades. El temps de vida d'un individu és censurat quan només és possible mesurar-lo de manera parcial o inexacta. Hi ha diverses circumstàncies que donen lloc a diversos tipus de censura. La censura en un interval fa referència a una situació on el succés d'interès no es pot observar directament i només tenim coneixement que ha tingut lloc en un interval de temps aleatori. Aquest tipus de censura ha generat molta recerca en els darrers anys i usualment té lloc en estudis on els individus són inspeccionats o observats de manera intermitent. En aquesta situació només tenim coneixement que el temps de vida de l'individu es troba entre dos temps d'inspecció consecutius.Aquesta tesi doctoral es divideix en dues parts que tracten dues qüestions importants que fan referència a dades amb censura en un interval. La primera part la formen els capítols 2 i 3 els quals tracten sobre condicions formals que asseguren que la versemblança simplificada pot ser utilitzada en l'estimació de la distribució del temps de vida. La segona part la formen els capítols 4 i 5 que es dediquen a l'estudi de procediments estadístics pel problema de k mostres. El treball que reproduïm conté diversos materials que ja s'han publicat o ja s'han presentat per ser considerats com objecte de publicació.En el capítol 1 introduïm la notació bàsica que s'utilitza en la tesi doctoral. També fem una descripció de l'enfocament no paramètric en l'estimació de la funció de distribució del temps de vida. Peto (1973) i Turnbull (1976) van ser els primers autors que van proposar un mètode d'estimació basat en la versió simplificada de la funció de versemblança. Altres autors han estudiat la unicitat de la solució obtinguda en aquest mètode (Gentleman i Geyer, 1994) o han millorat el mètode amb noves propostes (Wellner i Zhan, 1997).El capítol 2 reprodueix l'article d'Oller et al. (2004). Demostrem l'equivalència entre les diferents caracteritzacions de censura no informativa que podem trobar a la bibliografia i definim una condició de suma constant anàloga a l'obtinguda en el context de censura per la dreta. També demostrem que si la condició de no informació o la condició de suma constant són certes, la versemblança simplificada es pot utilitzar per obtenir l'estimador de màxima versemblança no paramètric (NPMLE) de la funció de distribució del temps de vida. Finalment, caracteritzem la propietat de suma constant d'acord amb diversos tipus de censura. En el capítol 3 estudiem quina relació té la propietat de suma constant en la identificació de la distribució del temps de vida. Demostrem que la distribució del temps de vida no és identificable fora de la classe dels models de suma constant. També demostrem que la probabilitat del temps de vida en cadascun dels intervals observables és identificable dins la classe dels models de suma constant. Tots aquests conceptes elsil·lustrem amb diversos exemples.El capítol 4 s'ha publicat parcialment en l'article de revisió metodològica de Gómez et al. (2004). Proporciona una visió general d'aquelles tècniques que s'han aplicat en el problema no paramètric de comparació de dues o més mostres amb dades censurades en un interval. També hem desenvolupat algunes rutines amb S-Plus que implementen la versió permutacional del tests de Wilcoxon, Logrank i de la t de Student per a dades censurades en un interval (Fay and Shih, 1998). Aquesta part de la tesi doctoral es complementa en el capítol 5 amb diverses propostes d'extensió del test de Jonckeere. Amb l'objectiu de provar una tendència en el problema de k mostres, Abel (1986) va realitzar una de les poques generalitzacions del test de Jonckheere per a dades censurades en un interval. Nosaltres proposem altres generalitzacions d'acord amb els resultats presentats en el capítol 4. Utilitzem enfocaments permutacionals i de Monte Carlo. Proporcionem programes informàtics per a cada proposta i realitzem un estudi de simulació per tal de comparar la potència de cada proposta sota diferents models paramètrics i supòsits de tendència. Com a motivació de la metodologia, en els dos capítols s'analitza un conjunt de dades d'un estudi sobre els beneficis de la zidovudina en pacients en els primers estadis de la infecció del virus VIH (Volberding et al., 1995).Finalment, el capítol 6 resumeix els resultats i destaca aquells aspectes que s'han de completar en el futur. / Survival analysis is used in various fields for analyzing data involving the duration between two events. It is also known as event history analysis, lifetime data analysis, reliability analysis or time to event analysis. One of the difficulties which arise in this area is the presence of censored data. The lifetime of an individual is censored when it cannot be exactly measured but partial information is available. Different circumstances can produce different types of censoring. Interval censoring refers to the situation when the event of interest cannot be directly observed and it is only known to have occurred during a random interval of time. This kind of censoring has produced a lot of work in the last years and typically occurs for individuals in a study being inspected or observed intermittently, so that an individual's lifetime is known only to lie between two successive observation times.This PhD thesis is divided into two parts which handle two important issues of interval censored data. The first part is composed by Chapter 2 and Chapter 3 and it is about formal conditions which allow estimation of the lifetime distribution to be based on a well known simplified likelihood. The second part is composed by Chapter 4 and Chapter 5 and it is devoted to the study of test procedures for the k-sample problem. The present work reproduces several material which has already been published or has been already submitted.In Chapter 1 we give the basic notation used in this PhD thesis. We also describe the nonparametric approach to estimate the distribution function of the lifetime variable. Peto (1973) and Turnbull (1976) were the first authors to propose an estimation method which is based on a simplified version of the likelihood function. Other authors have studied the uniqueness of the solution given by this method (Gentleman and Geyer, 1994) or have improved it with new proposals (Wellner and Zhan, 1997).Chapter 2 reproduces the paper of Oller et al. (2004). We prove the equivalence between different characterizations of noninformative censoring appeared in the literature and we define an analogous constant-sum condition to the one derived in the context of right censoring. We prove as well that when the noninformative condition or the constant-sum condition holds, the simplified likelihood can be used to obtain the nonparametric maximum likelihood estimator (NPMLE) of the failure time distribution function. Finally, we characterize the constant-sum property according to different types of censoring. In Chapter 3 we study the relevance of the constant-sum property in the identifiability of the lifetime distribution. We show that the lifetime distribution is not identifiable outside the class of constant-sum models. We also show that the lifetime probabilities assigned to the observable intervals are identifiable inside the class of constant-sum models. We illustrate all these notions with several examples.Chapter 4 has partially been published in the survey paper of Gómez et al. (2004). It gives a general view of those procedures which have been applied in the nonparametric problem of the comparison of two or more interval-censored samples. We also develop some S-Plus routines which implement the permutational version of the Wilcoxon test, the Logrank test and the t-test for interval censored data (Fay and Shih, 1998). This part of the PhD thesis is completed in Chapter 5 by different proposals of extension of the Jonckeere's test. In order to test for an increasing trend in the k-sample problem, Abel (1986) gives one of the few generalizations of the Jonckheree's test for interval-censored data. We also suggest different Jonckheere-type tests according to the tests presented in Chapter 4. We use permutational and Monte Carlo approaches. We give computer programs for each proposal and perform a simulation study in order compare the power of each proposal under different parametric assumptions and different alternatives. We motivate both chapters with the analysis of a set of data from a study of the benefits of zidovudine in patients in the early stages of the HIV infection (Volberding et al., 1995).Finally, Chapter 6 summarizes results and address those aspects which remain to be completed.
|
6 |
Measurement Error and Misclassification in Interval-Censored Life History DataWhite, Bethany Joy Giddings January 2007 (has links)
In practice, data are frequently incomplete in one way or another. It can be a significant challenge to make valid inferences about the parameters of interest in this situation. In this thesis, three
problems involving such data are addressed. The first two problems involve interval-censored life history data with mismeasured
covariates. Data of this type are incomplete in two ways. First, the exact event times are unknown due to censoring. Second, the true covariate is missing for most, if not all, individuals. This work
focuses primarily on the impact of covariate measurement error in progressive multi-state models with data arising from panel (i.e., interval-censored) observation. These types of problems arise frequently in clinical settings (e.g. when disease progression is of interest and patient information is collected during irregularly spaced clinic visits). Two and three state models are considered in this thesis. This work is motivated by a research program on psoriatic arthritis (PsA) where the effects of error-prone covariates on rates of disease progression are of interest and patient information is collected at clinic visits (Gladman et al. 1995; Bond et al. 2006). Information regarding the error distributions were available based on results from a separate study conducted to evaluate the reliability of clinical measurements that are used in PsA treatment and follow-up (Gladman et al. 2004). The asymptotic bias of covariate effects obtained ignoring error in covariates is investigated and shown to be substantial in some settings. In a series of simulation studies, the performance of corrected likelihood methods and methods based on a simulation-extrapolation (SIMEX) algorithm (Cook \& Stefanski 1994) were investigated to address covariate measurement error. The methods implemented were shown to result in much smaller empirical biases and empirical coverage probabilities which were closer to the nominal levels.
The third problem considered involves an extreme case of interval censoring known as current status data. Current status data arise when individuals are observed only at a single point in time and it is then determined whether they have experienced the event of interest. To complicate matters, in the problem considered here, an unknown proportion of the population will never experience the event of interest. Again, this type of data is incomplete in two ways. One assessment is made on each individual to determine whether or not an event has occurred. Therefore, the exact event times are unknown for those who will eventually experience the event. In addition, whether or not the individuals will ever experience the event is unknown for those who have not experienced the event by the assessment time. This problem was motivated by a series of orthopedic trials looking at the effect of blood thinners in hip and knee replacement surgeries. These blood thinners can cause a negative serological response in some patients. This response was the outcome of interest and the only available information regarding it was the seroconversion time under current status observation. In this thesis, latent class models with parametric, nonparametric and piecewise constant forms of the seroconversion time distribution are described. They account for the fact that only a proportion of the population will experience the event of interest. Estimators based on an EM algorithm were evaluated via simulation and the orthopedic surgery data were analyzed based on this methodology.
|
7 |
Measurement Error and Misclassification in Interval-Censored Life History DataWhite, Bethany Joy Giddings January 2007 (has links)
In practice, data are frequently incomplete in one way or another. It can be a significant challenge to make valid inferences about the parameters of interest in this situation. In this thesis, three
problems involving such data are addressed. The first two problems involve interval-censored life history data with mismeasured
covariates. Data of this type are incomplete in two ways. First, the exact event times are unknown due to censoring. Second, the true covariate is missing for most, if not all, individuals. This work
focuses primarily on the impact of covariate measurement error in progressive multi-state models with data arising from panel (i.e., interval-censored) observation. These types of problems arise frequently in clinical settings (e.g. when disease progression is of interest and patient information is collected during irregularly spaced clinic visits). Two and three state models are considered in this thesis. This work is motivated by a research program on psoriatic arthritis (PsA) where the effects of error-prone covariates on rates of disease progression are of interest and patient information is collected at clinic visits (Gladman et al. 1995; Bond et al. 2006). Information regarding the error distributions were available based on results from a separate study conducted to evaluate the reliability of clinical measurements that are used in PsA treatment and follow-up (Gladman et al. 2004). The asymptotic bias of covariate effects obtained ignoring error in covariates is investigated and shown to be substantial in some settings. In a series of simulation studies, the performance of corrected likelihood methods and methods based on a simulation-extrapolation (SIMEX) algorithm (Cook \& Stefanski 1994) were investigated to address covariate measurement error. The methods implemented were shown to result in much smaller empirical biases and empirical coverage probabilities which were closer to the nominal levels.
The third problem considered involves an extreme case of interval censoring known as current status data. Current status data arise when individuals are observed only at a single point in time and it is then determined whether they have experienced the event of interest. To complicate matters, in the problem considered here, an unknown proportion of the population will never experience the event of interest. Again, this type of data is incomplete in two ways. One assessment is made on each individual to determine whether or not an event has occurred. Therefore, the exact event times are unknown for those who will eventually experience the event. In addition, whether or not the individuals will ever experience the event is unknown for those who have not experienced the event by the assessment time. This problem was motivated by a series of orthopedic trials looking at the effect of blood thinners in hip and knee replacement surgeries. These blood thinners can cause a negative serological response in some patients. This response was the outcome of interest and the only available information regarding it was the seroconversion time under current status observation. In this thesis, latent class models with parametric, nonparametric and piecewise constant forms of the seroconversion time distribution are described. They account for the fact that only a proportion of the population will experience the event of interest. Estimators based on an EM algorithm were evaluated via simulation and the orthopedic surgery data were analyzed based on this methodology.
|
8 |
The Comparison of Parameter Estimation with Application to Massachusetts Health Care Panel Study (MHCPS) DataHuang, Yao-wen 03 June 2004 (has links)
In this paper we propose two simple algorithms to estimate parameters £] and baseline survival function in Cox proportional hazard model with application to Massachusetts Health Care Panel Study (MHCPS) (Chappell, 1991) data which is a left truncated and interval censored data. We find that, in the estimation of £] and baseline survival function, Kaplan and Meier algorithm is uniformly better than the Empirical algorithm. Also, Kaplan and Meier algorithm is uniformly more powerful than the Empirical algorithm in testing whether two groups of survival functions are the same. We also define a distance measure D and compare the performance of these two algorithms through £] and D.
|
9 |
Parameter estimation in proportional hazard model with interval censored dataChang, Shih-hsun 24 June 2006 (has links)
In this paper, we estimate the parameters $S_0(t)$ and $ eta$ in Cox proportional hazard model when data are all interval-censored. For the application of this model, data should be either exact or right-censored, therefore we
transform interval-censored data into exact data by three di®erent methods and then apply Nelson-Aalen estimate to obtain $S_0(t)$ and $ eta$. The test statistic
$hat{ eta}^2I(hat{ eta})$ is not approximately distributed as $chi^2_{(1)}$ but $chi^2_{(1)}$ times a
constant c.
|
10 |
Nonparametric tests for interval-censored failure time data via multiple imputationHuang, Jin-long 26 June 2008 (has links)
Interval-censored failure time data often occur in follow-up studies where subjects can only be followed periodically and the failure time can only be known to lie in an interval. In this paper we consider the problem of comparing two or more interval-censored samples. We propose a multiple imputation method for discrete interval-censored data to impute exact failure times from interval-censored observations and then apply existing test for exact data, such as the log-rank test, to imputed exact data. The test statistic and covariance matrix are calculated by our proposed multiple imputation technique. The formula of covariance matrix estimator is similar to the estimator used by Follmann, Proschan and Leifer (2003) for clustered data. Through simulation studies we find that the performance of the proposed log-rank type test is comparable to that of the test proposed by Finkelstein (1986), and is better than that of the two existing log-rank type tests proposed by Sun (2001) and Zhao and Sun (2004) due to the differences in the method of multiple imputation and the covariance matrix estimation. The proposed method is illustrated by means of an example involving patients with breast cancer. We also investigate applying our method to the other two-sample comparison tests for exact data, such as Mantel's test (1967) and the integrated weighted difference test.
|
Page generated in 0.0982 seconds