• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

One-sided interval edge-colorings of bipartite graphs

Renman, Jonatan January 2020 (has links)
A graph is an ordered pair composed by a set of vertices and a set of edges, the latter consisting of unordered pairs of vertices. Two vertices in such a pair are each others neighbors. Two edges are adjacent if they share a common vertex. Denote the amount of edges that share a specific vertex as the degree of the vertex. A proper edge-coloring of a graph is an assignment of colors from some finite set, to the edges of a graph where no two adjacent edges have the same color. A bipartition (X,Y) of a set of vertices V is an ordered pair of two disjoint sets of vertices such that V is the union of X and Y, where all the vertices in X only have neighbors in Y and vice versa. A bipartite graph is a graph whose vertices admit a bipartition (X,Y). Let G be one such graph. An X-interval coloring of G is a proper edge coloring where the colors of the edges incident to each vertex in X form an interval of integers. Denote by χ'int(G,X) the least number of colors needed for an X-interval coloring of G. In this paper we prove that if G is a bipartite graph with maximum degree 3n (n is a natural number), where all the vertices in X have degree 3, then <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathit%7B%5Cchi'_%7Bint%7D%5Cleft(G,X%5Cright)%5Cleq%7D%0A%5C%5C%0A%5Cmathit%7B%5Cleft(n-1%5Cright)%5Cleft(3n+5%5Cright)/2+3%7D%0A%5C%5C%0A%5Cmathit%7Bif%20n%20is%20odd,%7D%0A%5C%5C%0A%5Cmathit%7Bor%7D%0A%5C%5C%0A%5Cmathbf%7B3n%5E%7B2%7D/2+1%7D%0A%5C%5C%0A%5Cmathit%7Bif%20n%20is%20even%7D.%0A" />
2

On some graph coloring problems

Casselgren, Carl Johan January 2011 (has links)
No description available.

Page generated in 0.1353 seconds