• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Will Ultrasound Performed with the Rich-Mar AutoSound™ Be as Effective at Increasing Tissue Temperature as Ultrasound Performed with a Traditional Machine?

Black, Heather Diane 01 June 2015 (has links)
STUDY DESIGN: Randomized crossover experiment. OBJECTIVE: To determine whether the Rich-Mar AutoSound™ would be as effective as traditional ultrasound at increasing the temperature of the triceps surae muscle during a 10-min, 1 MHz, 1.0 W/cm2 ultrasound treatment. BACKGROUND: The AutoSound™ is a hands-free ultrasound device that is strapped on the body and left for the duration of the ultrasound treatment. It requires no clinician during the actual ultrasound treatment, thus freeing the clinician to perform other tasks and reducing clinician error during treatments. METHODS: 16 healthy subjects (6 males, 10 females, age = 22 ± 1.6 yrs, height = 173.2 ± 8.4 cm, weight = 72.5 ± 11.3 kg, triceps surae subcutaneous fat thickness = 0.85 ± 0.37 cm) received a 10-min, 1 MHz, 1.0 W/cm2 ultrasound treatment over their left triceps surae muscle with both the AutoSound™ and traditional ultrasound (via the TheraHammer™) with 24 hours between treatments. Temperatures were measured every 30 seconds during the ultrasound treatments by way of a thermistor, approximately 2.25 cm deep in the triceps surae. RESULTS: The AutoSound™ was not effective at increasing the temperature of the triceps surae muscle, as temperature decreased 0.16°C during treatment (p = 0.334). On average, the AutoSound™ caused intramuscular temperature to decrease at a rate of 0.016 ± 0.001°C per min. Traditional ultrasound performed using the TheraHammer™ had a total temperature increase of 0.41°C. Rate of temperature increase during traditional ultrasound was 0.025 ± 0.003°C per min (p < 0.0001). CONCLUSION: The AutoSound™ is not as effective at increasing muscle temperature as traditional ultrasound during a 10-min, 1 MHz, 1.0 W/cm2 treatment. However, neither the AutoSound™ nor traditional ultrasound was very effective at increasing the temperature of the triceps surae muscle during the treatment time.
2

Intramuscular Temperature Responses of the Vastus Lateralis and Semitendinosus During Squatting and Stretching With Whole Body Vibration

Allen, Joshua Gant 01 June 2011 (has links) (PDF)
This study was a randomized control trial. The purpose of this study was threefold: 1) to determine if intramuscular temperature (IMt) increases in the semitendinosus (ST) are similar to the vastus lateralis (VL) during standard WBV static squatting; 2) to determine if changes in intramuscular temperature of the hamstrings is different from a standard static semi-squat when undergoing WBV in a static stretching position; and 3) to determine if shorter overall durations as is typically used for stretching protocols (i.e. 5 repetitions of 30s each), will result in IMt increases. Twelve subjects (all males), with tight hamstrings completed this study (age 23.5 ± 1.5 years; body mass 76.3 ± 17.7 kg; height 177.8 ± 15.2 cm). Subjects were randomly assigned to treatment order of three groups: semi squat vibration (SQ), vibration with static stretch (VS), and static stretch only (SS). Subjects reported to the lab 3x, each visit separated by one week to receive all treatments. Each treatment day consisted of baseline temperature measurements in the VL and ST and following each of 2 sets (5x60-second for SQ, 5x30-second for VS and SS, with 30 seconds rest in between reps). Post-hoc comparisons revealed that VL temperature increases were significantly greater from baseline than the hamstrings at all three time periods (p<.0001). There were no significant differences found in ST IMt when comparing 5-minutes of total WBV in the VS condition (both sets of 2.5 minute bouts) to 5-minutes of vibration in the SQ condition (p=1.000), or between VS and SS after 5 minutes (p=.9827). Post-hoc comparisons between SS and VS conditions revealed no significant differences after 2.5 minutes (p=1.000), 5 minutes (p=.8812), and 10-minutes post vibration (p=.9844) in ST or VL (p=1.000, p=.0540, and p=.1815 respectively) temperature. The results of our study show that the ST does not exhibit similar increases in IMt as the VL when performing standard semi-squat WBV training. The IMts seen in the static stretch both with and without vibration seem to suggest that factors other than IMt most likely contribute to flexibility changes seen in prior WBV flexibility studies.
3

The Effects of the ReBound Diathermy Unit, Megapulse II Shortwave Diathermy Unit and Moist Hot Packs on Tissue Temperature Increase of the Triceps Surae Muscle Group

Hawkes, Amanda Rose 16 June 2011 (has links) (PDF)
Context: Clinicians use a number of superficial and deep heating modalities, including pulsed shortwave diathermy (PSWD) and moist hot packs, in the clinical setting. Recently, a continuous diathermy unit called ReBound was introduced into the clinical setting. Its effectiveness as a heating modality is unknown. Objective: To compare the effects of PSWD, moist hot packs and the ReBound unit on tissue temperature in the triceps surae muscle. Design: A 3 x 27 factorial cross-over design with repeated measures. Setting: University research laboratory. Subjects: Twelve healthy college-aged volunteers (4 men, 8 women; age = 22.2 ± 2.25; calf subcutaneous fat thickness = .72 cm ± .19 cm). Interventions: On three different days separated by at least 48 hours, one of three modality treatments (PSWD, moist hot packs or ReBound unit) selected using a Latin-square was applied to the triceps surae muscle of each participant for 30 minutes. After the 30 minute treatment, the modality was removed and temperature decay was recorded for 20 minutes. Main Outcome Measures: Medial triceps surae intramuscular tissue temperature at 1 cm and 3 cm deep was measured using implantable thermocouples inserted horizontally into the muscle. Measurements were taken every 5 minutes during the 30 minute treatment and every minute during the 20 minute temperature decay for a total of 50 minutes. A 3 x 27 mixed model analysis of variance blocking by subject was used to assess the effects of treatments and time, and their interaction on the tissue temperature at 1 cm and 3 cm depths. Results: A significant treatment by time interaction main effect was found for tissue temperature increase at each depth, 1 cm (F52, 572 =14.66, p < .0001) and 3 cm (F52, 572 = 17.86, p < .0001). Post-hoc measures revealed that tissue temperature significantly increased with the PSWD over the ReBound unit and moist hot packs at 1 cm and 3 cm depths. There was no significant difference between the ReBound unit and moist hot packs throughout the treatment and temperature decay. The greatest mean tissue temperature increase from baseline was observed with the PSWD unit at 1 cm (5.96°C ± 2.04°C) and at 3 cm (4.32°C ± 1.79°C). There was no statistical difference between the increases observed with the ReBound (1 cm: 3.69°C ± 1.50; 3 cm: 2.31°C ± .87) and moist hot packs (1 cm: 2.82°C ± .90; 3 cm: 1.56°C ± 1.00). Conclusions: During a 30 minute treatment, PSWD was the most effective at increasing intramuscular tissue temperature of the triceps surae muscle group. There was no significant difference between the effectiveness of moist hot packs and the ReBound continuous diathermy unit in increasing intramuscular tissue temperature.
4

Heat Penetration into Soft Tissue with 3 MHz Ultrasound

Franson, Jared M. 13 March 2013 (has links) (PDF)
Therapeutic ultrasound is a deep heating modality often used to produce vigorous heating (≥4°C Δ) in tissues. The vigorous heating effects of 3 MHz therapeutic ultrasound have only been tested to a 2.5 cm depth, but its maximal depth of producing vigorous heating has yet to be established. Objective: To investigate the tissue temperature change produced by a 3 MHz ultrasound treatment at depths of 3 and 3.5 cm in the human triceps surae muscle group. Design: Randomized control design. Setting: Therapeutic modalities research laboratory. Patients or Other Participants: Twenty healthy college-aged participants (male = 13, female = 7; age = 23.4 ± 1.31; calf subcutaneous fat thickness= 0.6 cm ± 0.2 cm). Participants were randomized into treatment (n = 15) and sham (n = 5) groups. Participants were blinded to their group assignment. Interventions: Two MT-26/6 needle thermocouples were inserted into the left posterior triceps surae at depths of 3.0 ± 0.1cm and 3.5 ± 0.1cm from the skin's surface. Participants in the treatment group received a continuous 3 MHz ultrasound treatment at 1.4 W/cm2 for 8 minutes with 10mL of 100% ultrasound gel as a coupling medium. Participants in the sham group received the same treatment parameters, but the ultrasound device was not turned on. The Omnisound 3000 ultrasound device (ERA = 4.2cm2, BNR = 3.0:1) was used for all treatments. A 15 cm2 template was used to ensure a constant and proper treatment size. Baseline temperature (TB) was established by taking a mean of intramuscular tissue temperature (TIM)for five minutes before the treatment and TIM were recorded every 10 seconds throughout the experiment session. Participants marked a visual analog scale (VAS) indicating heat sensation at pre-treatment and post-treatment. Main Outcome Measures: A 2 x 2 x 2 (probe depth x condition x time) ANCOVA with TB used as a covariate analyzed the difference in TIM. We only used the time points of baseline and final TIM for our analysis as we are only interested in the change in TIM from beginning to end of the ultrasound treatment. Descriptive statistics for TIM and VAS for heat sensation were computed as post-treatment minus pre-treatment for each condition and probe depth. Results: There was a significant difference in TIM between the conditions at the different probe depths from the beginning and end of the ultrasound treatment (F1,15 = 7.35, p = 0.016). The mean changes in TIM for each condition at each probe depth were: sham 3cm = -0.4 ± 0.3°C, sham, 3.5cm = -0.2 ± 0.3°C, treatment, 3cm = 4.4 ± 0.2°C, treatment, 3.5cm = 3.5 ± 0.2°C. Mean VAS scores for each group were: sham = 0 ± 0mm and treatment = 71.8 ± 11.8mm. Conclusions: At 3cm deep into the posterior calf, the Omnisound 3000 using a 3 MHz treatment produced vigorous heating (≥4°C Δ). Moderate heating (2-3°C Δ) occurred at 3.5cm deep into the calf. Three MHz ultrasound may be used to heat tissues deeper than previously theorized, but it does, however, create a moderately high level of heat sensation for the patient.

Page generated in 0.1145 seconds