• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Segmentations of the intraretinal surfaces, optic disc and retinal blood vessels in 3D-OCT scans

Lee, Kyung Moo 01 May 2009 (has links)
Optical coherence tomography (OCT) is a safe and non-invasive imaging technique providing high axial resolution. A spectral-domain OCT scanner capable of acquiring volumetric data of the retina is becoming an increasingly important modality in ophthalmology for the diagnosis and management of a variety of retinal diseases such as glaucoma, diabetic retinopathy and age related macular degeneration (AMD) which are major causes of a loss of vision. To analyze and track these ocular diseases, developments of the automated methods for detecting intraretinal layers, optic discs and retinal blood vessels from spectral-domain OCT scans are highly required recently. The major contributions of this thesis include: 1) developing a fast method that can automatically segment ten intraretinal layers in the spectral-domain macular OCT scan for the layer thickness analysis, 2) developing a method that can automatically segment the optic disc cup and neuroretinal rim in the spectral-domain OCT scan centered at the optic nerve head (ONH) to measure the cup-to-disc ratio, an important structural indicator for the progression of glaucoma, and 3) developing a method that can automatically segment the 3-D retinal blood vessels in the spectral-domain ONH-centered OCT scan to extract 3-D features of the vessels for the diagnosis of retinal vascular diseases.

Page generated in 0.0875 seconds