• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Different Expression of Placental Pyruvate Kinase M2 in Normal, Preeclamptic, and Intrauterine Growth Restriction Pregnancies

Bahr, Brigham L. 10 March 2014 (has links) (PDF)
This thesis will be organized into two chapters discussing the placental expression of two proteins, pyruvate kinase M2 (PKM2) and heat shock protein 27 (HSP 27), in human placentas. Understanding the mechanisms of placental metabolism in healthy and diseased placentas helps us understand how placenta disorders occur and how we can treat these disorders. The goal is to investigate these proteins to gain an understanding of their roles in placental disorders and help decrease maternal and fetal mortality rates. Chapter one covers the background of pyruvate kinase M2 (PKM2) in cancer and embryonic tissues, and the expression of PKM2 in the human placenta. Cancer PKM2 has been studied extensively, but little is know about the role of placental PKM2. Expression of PKM2 is confirmed in normal human placenta samples and described in preeclamptic and intrauterine growth restriction (IUGR) affected human placentas. Proteins associated with elevated PKM2 in cancer are also associated with elevated PKM2 in human placentas. Comparing normal and diseased placenta samples helps understand the similarities between cancer PKM2 and placental PKM2. Understanding the mechanisms of placental metabolism and PKM2 expression in the human placenta will clarify how the placenta is affected by preeclampsia and IUGR and the role placental PKM2 plays in each of these diseases. Chapter two will cover a paper that I wrote on the expression of phosphorylated heat shock protein 27 (HSP27) in the human placenta. Heat shock proteins are involved in the stress response and help inhibit apoptosis. The object of the study was to look for correlations between p-HSP27 and apoptosis in human and ovine placenta samples. P-HSP27 was quantified in human placenta samples and in placenta sampled collected from ovine models. Pregnant control and hyperthermic sheep models were used to quantify expression of p-HSP27 across gestation. This study showed similarities between human IUGR and our ovine IUGR model, suggesting a link between decreased p-HSP27 and increased apoptosis in IUGR.
2

The Role of Hypoxia on Pyruvate Kinase M2, mammalian Target of Rapamycin, Mitochondrial Function, and Cell Invasion in the Trophoblast

Kimball, Rebecca Lutz 01 March 2016 (has links) (PDF)
This thesis will be organized into two chapters discussing the role of hypoxia in the human placenta. The goal of this thesis is to characterize pyruvate kinase M2, mammalian target of rapamycin, mitochondrial function, and cell invasion in hypoxic conditions in the trophoblast. Understanding the mechanisms of placental metabolism can lead to further treatments for placental diseases. Chapter one covers the background of intrauterine growth restriction, hypoxia, placental metabolism, and pyruvate kinase M2 (PKM2). Little is currently understood about the role of the mitochondria in placental diseases. Expression of PKM2, trophoblast cell invasion, and mitochondrial function is shown to be inhibited by hypoxia. PKM2 inhibition decreases trophoblast cell invasion and nuclear expression of PKM2, but increases mitochondrial function. Studying how hypoxia affects the placenta during placental diseases can help clarify the mechanisms by which these diseases occur. Chapter two further characterizes the background of intrauterine growth restriction and hypoxia. It also covers the background of mammalian target of rapamycin. The objective of this chapter was to assess activated mTOR in the trophoblast in hypoxia. Decreased placental and fetal weights, as well as trophoblast cell invasion were observed in hypoxia. A decrease in the activation of mTOR was also found in the hypoxic placenta. This study could provide insight into the physiological relevance of the pathways and could be targeted to help alleviate placental diseases.
3

The role of the mTOR pathway and amino acid availability for pre- and postnatal cardiac development, growth and function

Hennig, Maria 11 August 2015 (has links)
Die Entwicklung eines Embryos und Fetus beeinflusst die Anfälligkeit für kardiovaskuläre Erkrankungen im weiteren Verlauf des Lebens entscheidend. Zugrundeliegende Mechanismen sind jedoch weitestgehend unbekannt. Unter Zuhilfenahme eines neuen Mausmodells für intrauterine kardiale Wachstumsretardierung zielt die vorliegende Dissertation auf die Identifikation adaptiver Wachstumsmechanismen ab, welche die Anpassung der Organgröße und die Aufrechterhaltung einer normalen Herzfunktion ermöglichen. Vielzählige Gene des Aminosäure (AS)-Metabolismus und der Proteinhomeostase zeigten eine vermehrte Expression in neugeborenen Mausherzen nach gestörter Embryonalentwicklung. Es wurde angenommen, dass sowohl die AS-Verfügbarkeit als auch die Aktivität der mechanistic target of rapamycin (mTOR) Signalkaskade entscheidend für eine normale Herzentwicklung und postnatales kompensatorisches Wachstum sind. Der mTOR Komplex 1 (mTORC1) wurde in prä- und perinatalen Mäusen mittels Rapamycin-Behandlung trächtiger Weibchen inhibiert. Die Auswirkungen einer prä- und postnatalen AS-Restriktion wurden anhand einer Niedrigproteindiät untersucht. Rapamycin-behandelte Neugeborene zeichneten sich durch vermindertes Gesamtwachstum sowie Entwicklungsverzögerung aus. Dabei war die kardiale Entwicklung besonders betroffen. Kardiale Proliferationsraten waren nicht verändert, die verminderte Herzgröße wurde jedoch auf eine verringerte Kardiomyozytengröße sowie eine erhöhte Apoptoserate zurückgeführt. Die intrauterine AS-Restriktion wurde überraschend gut von den Mausherzen toleriert. Zusammenfassend konnte gezeigt werden, dass die mTOR Signalkaskade essentiell für eine normale Herzentwicklung sowie kompensatorisches kardiales Wachstum ist. Darüber hinaus stellt die pränatale Rapamycin-Behandlung möglicherweise ein neues Modell der intrauterinen Wachstumsretardierung dar, welches Untersuchungen von Programmierungs-Mechanismen vor allem während der fötalen und perinatalen Herzentwicklung ermöglicht. / Intrauterine development influences the susceptibility to cardiovascular disease in adulthood, although the underlying molecular mechanisms are vastly unknown. Utilizing a new mouse model of impaired heart development, this thesis aims at identifying pre- and postnatal adaptive growth mechanisms to restore organ size and allow normal cardiac function. Unbiased functional annotation of genes differentially expressed in neonatal hearts after impaired intrauterine development revealed numerous gene clusters involved in amino acid (AA) metabolism and protein homeostasis. It was hypothesized that both AA availability and mechanistic target of rapamycin (mTOR) pathway activation are crucial for normal heart development and compensatory cardiac growth. mTOR complex 1 (mTORC1) was inhibited in fetal and neonatal mice by rapamycin treatment of pregnant dams. The effects of pre- and postnatal AA restriction were studied by feeding dams a low protein diet (LPD) throughout pregnancy and keeping the offspring on LPD postnatally. Rapamycin treated neonates were characterized by overall growth restriction and developmental delay, where cardiac development was especially affected (reduction of heart size, weight and heart weight to body weight ratio, severe thinning and noncompaction of the ventricular myocardium as well as immature myocardial morphology). While proliferation rates were unaffected, the reduced neonatal heart size was attributed to decreased cardiomyocyte size and increased apoptosis. Strikingly, the murine heart appeared to be surprisingly resistant to intrauterine AA restriction. In conclusion, the data revealed mTOR being essential for normal as well as compensatory cardiac development and growth. Moreover, prenatal rapamycin treatment might represent a new model of intrauterine growth restriction, which potentially allows the investigation of developmental programming mechanisms within the heart particularly in the fetal and neonatal phase of development.
4

Effects of exercise training on intrauterine growth restriction in an animal model

Kasaei Roodsari, Aida 09 1900 (has links)
No description available.

Page generated in 0.1815 seconds