• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Long-Term Modulation of the Intrinsic Cardiac Nervous System by Spinal Cord Neurons in Normal and Ischaemic Hearts

Armour, J. A., Linderoth, B., Arora, R. C., DeJongste, M. J.L., Ardell, J. L., Kingma, J. G., Hill, M., Foreman, R. D. 10 January 2002 (has links)
Electrical excitation of the dorsal aspect of the rostral thoracic spinal cord imparts long-term therapeutic benefits to patients with angina pectoris. Such spinal cord stimulation also induces short-term suppressor effects on the intrinsic cardiac nervous system. The purpose of this study was to determine whether spinal cord stimulation (SCS) induces long-term effects on the intrinsic nervous system, particularly in the presence of myocardial ischaemia. The activity generated by right atrial neurons was recorded in 10 anesthetized dogs during basal states, during prolonged (15 min) occlusion of the left anterior descending coronary artery, and during the subsequent reperfusion phase. Neuronal activity and cardiovascular indices were also monitored when the dorsal T1-T4 segments of the spinal cord were stimulated electrically (50 Hz; 0.2 ms) at an intensity 90% of motor threshold (mean 0.32 mA) for 17 min. SCS was performed before, during and after 15-min periods of regional ventricular ischaemia. Occlusion of a major coronary artery, one that did not perfuse investigated neurons, resulted in their excitation. Ischaemia-induced neuronal excitatory effects were suppressed (-76% from baseline) by SCS. SCS suppression of intrinsic cardiac neuronal activity persisted during the subsequent reperfusion period; after terminating 17 min of SCS, at least 20 min elapsed before intrinsic cardiac neuronal activity returned to baseline values. It is concluded that populations of intrinsic cardiac neurons are activated by inputs arising from the ischaemic myocardium. Ischaemia-induced activation of these neurons is nullified by SCS. The neuronal suppressor effects that SCS induces persist not only during reperfusion, but also for an extended period of time thereafter. These long-term effects may account, in part, for the fact that SCS imparts clinical benefit to patients with angina of cardiac origin not only during its application, but also for a time thereafter.
2

Chronic Spinal Cord Stimulation Modifies Intrinsic Cardiac Synaptic Efficacy in the Suppression of Atrial Fibrillation

Ardell, Jeffrey L., Cardinal, René, Beaumont, Eric, Vermeulen, Michel, Smith, Frank M., Andrew Armour, J. 01 January 2014 (has links)
We sought to determine whether spinal cord stimulation (SCS) therapy, when applied chronically to canines, imparts long-lasting cardio-protective effects on neurogenic atrial tachyarrhythmia induction and, if so, whether its effects can be attributable to i) changes in intrinsic cardiac (IC) neuronal transmembrane properties vs ii) modification of their interneuronal stochastic interactivity that initiates such pathology. Data derived from canines subjected to long-term SCS [(group 1: studied after 3-4 weeks SCS; n = 5) (group 2: studied after 5 weeks SCS; n = 11)] were compared to data derived from 10 control animals (including 4 sham SCS electrode implantations). During terminal studies conducted under anesthesia, chronotropic and inotropic responses to vagal nerve or stellate ganglion stimulation were similar in all 3 groups. Chronic SCS suppressed atrial tachyarrhythmia induction evoked by mediastinal nerve stimulation. When induced, arrhythmia durations were shortened (controls: median of 27 s; SCS 3-4 weeks: median of 16 s; SCS 5 weeks: median of 7 s). Phasic and accommodating right atrial neuronal somata displayed similar passive and active membrane properties in vitro, whether derived from sham or either chronic SCS group. Synaptic efficacy was differentially enhanced in accommodating (not phasic) IC neurons by chronic SCS. Taken together these data indicate that chronic SCS therapy modifies IC neuronal stochastic inter-connectivity in atrial fibrillation suppression by altering synaptic function without directly targeting the transmembrane properties of individual IC neuronal somata. •Spinal cord stimulation (SCS) suppresses neurally induced atrial fibrillation (AF).•Effectiveness of SCS in AF suppression increases with time.•SCS minimally impacts active and passive properties of individual intrinsic cardiac neurons.•SCS modifies synaptic efficacy of the IC network.•SCS differentially impacts the neurotransmission to the accommodating sub-population of IC neurons.
3

Capsaicin-Evoked Bradycardia in Anesthetized Guinea Pigs Is Mediated by Endogenous Tachykinins

Hancock, John, Hoover, Donald B. 10 April 2008 (has links)
The present study was done to characterize the effects of endogenous tachykinins on heart rate in urethane-anesthetized guinea pigs. Intravenous injection of capsaicin (32 nmol/kg) was used to evoke release of tachykinins and calcitonin gene-related peptide (CGRP) from cardiac sensory nerve fibers. Such injections caused a brief decrease in heart rate (- 37 ± 7 beats/min, n = 6) that was followed by a more prolonged increase (+ 44 ± 10 beats/min). Blood pressure was lowered by - 11 ± 2 mmHg. Bilateral vagotomy did not affect the chronotropic or depressor responses to capsaicin, but atropine (1 μmol/kg) nearly abolished the bradycardic response (- 8 ± 3 beats/min, n = 7). Combined blockade of NK2 and NK3 receptors, with SR48968 and SR14801 respectively, also caused a significant reduction of capsaicin-evoked bradycardia (- 14 ± 3 beats/min, n = 4) but did not affect bradycardia evoked by vagal nerve stimulation. Blockade of CGRP receptors eliminated capsaicin-evoked tachycardia and prolonged the capsaicin-evoked bradycardia. These findings suggest that capsaicin-evoked bradycardia in the anesthetized guinea pig is mediated by tachykinins that stimulate cardiac cholinergic neurons. This effect appears to be truncated by the positive chronotropic action of CGRP that is also released from cardiac afferents by capsaicin.
4

Intrinsic Cardiac Nervous System in Tachycardia Induced Heart Failure

Arora, Rakesh C., Cardinal, René, Smith, Frank M., Ardell, Jeffrey L., Dell'Italia, Louis J., Armour, J. Andrew 01 January 2003 (has links)
The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered α- or β-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to influence cardiodynamics becomes obtunded.
5

Variable Expression of GFP in Different Populations of Peripheral Cholinergic Neurons of ChAT<sup>BAC</sup>-eGFP Transgenic Mice

Brown, T. Christopher, Bond, Cherie E., Hoover, Donald B. 01 March 2018 (has links)
Immunohistochemistry is used widely to identify cholinergic neurons, but this approach has some limitations. To address these problems, investigators developed transgenic mice that express enhanced green fluorescent protein (GFP) directed by the promoter for choline acetyltransferase (ChAT), the acetylcholine synthetic enzyme. Although, it was reported that these mice express GFP in all cholinergic neurons and non-neuronal cholinergic cells, we could not detect GFP in cardiac cholinergic nerves in preliminary experiments. Our goals for this study were to confirm our initial observation and perform a qualitative screen of other representative autonomic structures for the presences of GFP in cholinergic innervation of effector tissues. We evaluated GFP fluorescence of intact, unfixed tissues and the cellular localization of GFP and vesicular acetylcholine transporter (VAChT), a specific cholinergic marker, in tissue sections and intestinal whole mounts. Our experiments identified two major tissues where cholinergic neurons and/or nerve fibers lacked GFP: 1) most cholinergic neurons of the intrinsic cardiac ganglia and all cholinergic nerve fibers in the heart and 2) most cholinergic nerve fibers innervating airway smooth muscle. Most cholinergic neurons in airway ganglia stained for GFP. Cholinergic systems in the bladder and intestines were fully delineated by GFP staining. GFP labeling of input to ganglia with long preganglionic projections (vagal) was sparse or weak, while that to ganglia with short preganglionic projections (spinal) was strong. Total absence of GFP might be due to splicing out of the GFP gene. Lack of GFP in nerve projections from GFP-positive cell bodies might reflect a transport deficiency.

Page generated in 0.0855 seconds