• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Exploratory Study of the Remixing Practices in the Scratch Programming Community: Trends, Causalities, and Influences

Khawas, Prapti Prakash 11 June 2019 (has links)
One of the greatest achievements of Scratch as an educational tool is the eager willingness of programmers to use existing projects as the starting point for their own projects, a practice known as remixing. Despite the importance of remixing as a foundation of collaborative and communal learning, the practice remains poorly understood. Without a clear picture of how and why Scratch programmers remix a project as a starting point of their own projects, this programming community would remain in the dark about which programming practices encourage and facilitate remixing. The designers of programming environments for blocks lack feedback on how the remixing facility is used in the wild. To gain a deeper insight into remixing, this thesis presents the results of a comprehensive study of this practice in Scratch that investigates the following heretofore unexplored dimensions of remixing: (1) the prevailing modifications that remixes perform on existing projects, (2) the impact of the original project's code quality on the granularity, extent, and development time of the modifications in the remixes, and (3) the propensity of the dominant programming practices in the original project to remain so in the remixes. Our findings can be used to promote those programming practices in the Scratch community that encourage remixing while also improving this practice's effectiveness, thus benefiting the educational and end-user programming communities. / Master of Science / The Scratch programming language has become an intrinsically important tool in introductory CS education. A visual, block-based language, Scratch is web-based, featuring an enormous online programming community, through which projects are eagerly shared. One of the unique learning provisions of Scratch is the ability to easily start a project by modifying someone else’s project, a practice referred to as remixing. Despite the central role that remixing plays in enabling the communal and collaborative learning styles in the Scratch community, the practice of remixing remains inadequately understood. This knowledge gap leaves the Scratch community in the dark about which programming practices encourage and facilitate remixing, as well as deprives Scratch environment designers from actionable feedback on how the remixing facility is used in the wild. To address this problem, this thesis reports on the results of an exploratory study of remixing in Scratch that investigates three heretofore unexplored dimensions of this practice. First, we study the general remixing trends in terms of how remixes modify the original projects. Second, we infer the impact of a project’s code quality on the modifications in its remixes and the development time. Finally, we investigate whether programmers adopt the techniques and practices of the remixed projects. Computing educators can apply our findings to enhance the educational effectiveness of Scratch by encouraging the practice and magnitude of remixing.
2

Automated Identification and Application of Code Refactoring in Scratch to Promote the Culture Quality from the Ground up

Techapalokul, Peeratham 04 June 2020 (has links)
Much of software engineering research and practice is concerned with improving software quality. While enormous prior efforts have focused on improving the quality of programs, this dissertation instead provides the means to educate the next generation of programmers who care deeply about software quality. If they embrace the culture of quality, these programmers would be positioned to drastically improve the quality of the software ecosystem. This dissertation describes novel methodologies, techniques, and tools for introducing novice programmers to software quality and its systematic improvement. This research builds on the success of Scratch, a popular novice-oriented block-based programming language, to support the learning of code quality and its improvement. This dissertation improves the understanding of quality problems of novice programmers, creates analysis and quality improvement technologies, and develops instructional approaches for teaching quality improvement. The contributions of this dissertation are as follows. (1) We identify twelve code smells endemic to Scratch, show their prevalence in a large representative codebase, and demonstrate how they hinder project reuse and communal learning. (2) We introduce four new refactorings for Scratch, develop an infrastructure to support them in the Scratch programming environment, and evaluate their effectiveness for the target audience. (3) We study the impact of introducing code quality concepts alongside the fundamentals of programming with and without automated refactoring support. Our findings confirm that it is not only feasible but also advantageous to promote the culture of quality from the ground up. The contributions of this dissertation can benefit both novice programmers and introductory computing educators. / Doctor of Philosophy / Software remains one of the most defect-prone artifacts across all engineering disciplines. Much of software engineering research and practice is concerned with improving software quality. While enormous prior efforts have focused on improving the quality of programs, this dissertation instead provides the means to educate the next generation of programmers who care deeply about software quality. If they embrace the culture of quality, these programmers would be positioned to drastically improve the quality of the software ecosystem, akin to professionals in traditional engineering disciplines. This dissertation describes novel methodologies, techniques, and tools for introducing novice programmers to software quality and its systematic improvement. This research builds on the success of Scratch, a popular visual programming language for teaching introductory students, to support the learning of code quality and its improvement. This dissertation improves the understanding of quality problems of novice programmers, creates analysis and quality improvement technologies, and develops instructional approaches for teaching quality improvement. This dissertation contributes (1) a large-scale study of recurring quality problems in Scratch projects and how these problems hinder communal learning, (2) four new refactorings, quality improving behavior-preserving program transformations, as well as their implementation and evaluation, (3) a study of the impact of introducing code quality concepts alongside the fundamentals of programming with and without automated refactoring support. Our findings confirm that it is not only feasible but also advantageous to promote the culture of quality from the ground up. The contributions of this dissertation can benefit both novice programmers and introductory computing educators.

Page generated in 0.192 seconds