• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 15
  • 11
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 287
  • 94
  • 65
  • 35
  • 35
  • 32
  • 30
  • 30
  • 27
  • 23
  • 21
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Domain II (S5-P) region in Lymnaea T-type calcium channels and its role in determining biophysical properties, ion selectivity and drug sensitivity

Guan, Wendy 27 May 2015 (has links)
Invertebrate T-type calcium channels cloned from the great pond snail, Lymnaea Stagnalis (LCav3) possess highly sodium permeant ion channel currents by means of alternative splicing of exon 12. Exon 12 is located on the extracellular turret and the descending helix between segments 5 and segments 6, upstream of the ion selectivity filter in Domain II. Highly-sodium permeant T-type channels are generated without altering the selectivity filter locus, the primary regulatory domain known to govern ion selectivity for calcium and sodium channels. Comparisons of exon 12 sequences between invertebrates and vertebrate T-type channels reveals a conserved pattern of cysteine residues. Calcium-selective mammalian T-type channels possess a single cysteine in exon 12 in comparison to invertebrate T-type channels with either a tri- or penta- cysteine framework. Cysteine residues in exon 12 were substituted with a neutral amino acid, alanine in LCav3 channels harbouring exon 12a and 12b to mimic the turret structure of vertebrate T-type channels. The results generated T-type channels that were even more sodium-permeable than the native T-type channels in snails. Furthermore, permeant divalent ions similar in structure to calcium (eg. barium) were unable to sufficiently block the monovalent ion current of channels lacking cysteines in Domain II, suggesting that the pore is highly sodium permeant, and has weak affinity and block by permeant divalent ions other than calcium. Besides ion selectivity, the cysteine mutated T-type channels were 10 to 100 fold more sensitive to inhibition by nickel and zinc, respectively. The cysteine mutation data highly suggests that the cysteines form an extracellular structure that regulates ion selectivity and shields T-type channels from block by nickel and zinc. In addition, we replaced exon 12 from the sodium permeant snail T-type channel with exon 12 from human Cav3.2 channels. The snail T-type channel with exon 12 from human T-type channels produced a T-type channel that was modestly sodium permeable, but did not confer the high calcium permeability of Cav3.2 channels. These findings suggest that the cysteine containing extracellular domains in exon 12 are not sufficient to generate calcium selective channels similar to human Cav3.2 and likely work in concert with other extracellular domains to regulate the calcium or sodium selectivity of T-type channels.
82

On the occurrence, ecology and behaviour of Onchidella celtica (Gastropoda, Onchidiacea) in the littoral of Cornwall

Tween, Trevor Charles January 1987 (has links)
Onchidella celtica is the only onchidiacean to occur in Britain; it is a littoral pulmonate gastropod of controversial taxonomic placement and an historica1 review of the group is therefore presented. The habitat, spatial dispersion, local distribution and geographical range of O.celtica are each described, with particular reference to Cornish shores. The nature of the substratum, exposure and the adverse affects of low temperatures are suggested as the principal parameters controlling the observed distributions, which are considered in detail. O.celtica lays capsular spawn and examination of these has enabled development times and hatching rates to be assessed. Juvenile growth rates have also been investigated to aid the interpretation of population age-structure in shore-line samples, and the dynamics and longevity of the population are discussed. Reproduction is shown to be inhibited by low temperatures. The various reproductive strategies of the onchidiaceans are discussed. Likely causes of mortality are considered, the likelihood of predation by intertidal carnivores is assessed and defensive strategies, including glandular secretions, rhythms of activity and cryptic habits, are shown to be important in evading predation. Various aspects of the behaviour of O.celtica are investigated quantitatively, including aggregation, crevice selection and foraging, and their importance as strategies in successfully exploiting the exposed littoral environment is discussed. A detailed investigation of homing behaviour shows this to be accomplished without obvious trail-following. and remote olfaction is suggested as the principal mechanism of homing. Ambient temperature has a marked effect on the frequency of individuals foraging, and the role of other environmental variables is considered. The feeding behaviour and diet of O.celtica are described, and the possibility of food selection is considered. A preliminary histochemical examination has elucidated the distribution of certain classes of enzymes in the gut of O.celtica.
83

The City and the Stream: Impacts of Municipal Wastewater Effluent on the Riffle Food Web in the Speed River, Ontario

Robinson, Chris January 2011 (has links)
Fast paced population growth in urban areas of southern Ontario is putting increased pressure on the surrounding aquatic environment. The City of Guelph uses the Speed River to assimilate its municipal wastewater effluent. With a projected 57% population increase in the watershed by 2031, the assimilative capacity of the river may be challenged in the coming years. The Guelph Wastewater Treatment Plant uses tertiary treatment methods greatly reducing ammonia, suspended solids and phosphate concentrations in the effluent. However there are still impacts detectable related to excessive nutrients released into this relatively small river (6th order) which promotes algae and aquatic macrophyte growth. There is also concern about a variety of emerging contaminants that may enter the river and impact the health of the ecosystem. The research in this thesis examined the seasonal and spatial variability and extent of the impacts of the wastewater effluent on the riffle fish communities in the Speed River. Stable isotope signatures (δ13C and δ15N) were used to understand the changes in the dominant benthic fish species, Rainbow Darters (Etheostoma caeruleum) and Greenside Darters (E. blennioides), relative to changes in invertebrate signatures and their abundance. Rainbow Darters were extremely abundant relative to Greenside Darters at the site immediately downstream of the effluent outfall, particularly in August. The benthic invertebrate community was distinctly different downstream of the effluent outfall, especially in the summer, with a reduced abundance of Elmidae beetle larvae and increased abundance of isopods (Caecidotea intermedius) compared to upstream. δ13C and δ15N of the two darters species were similar at all sites in May and July, but in August and October Rainbow Darter signatures were more enriched in the two heavier isotopes at sites downstream of the effluent outfall. The vast majority of invertebrate taxa sampled were also enriched at the downstream sites. An analysis of Rainbow and Greenside Darter stomach contents revealed that Rainbow Darters incorporated more isopods and other invertebrates in their diet, especially at the immediate downstream sites suggesting that they are more adaptable to the altered downstream environment. The feeding habits of Greenside Darters appear to change between July and August in response to changes in habitat and food availability. They are potentially consuming food organisms with less enriched isotopic signatures, which results in their isotopic signatures not rising during these months like most of the invertebrates and other fish. Alternatively, the Greenside Darters may move across the stream to feed on invertebrates that remain unexposed to the wastewater effluent. These impacts, although subtle, may be a reflection of the Speed River ecosystem being compromised by nutrient inputs from the wastewater effluent. With the impending increase in demand on the treatment plant (e.g., population growth), ongoing treatment and infrastructure improvements may be needed in the future to maintain the current ecosystem structure.
84

The role of biological disturbance in determining the organisation of sub-tidal encrusting communities in temperate waters

Ayling, Tony, 1947- January 1976 (has links)
Biological disturbance was found to be one of the most important mechanisms control1ing community organisation in the temperate sub-tidal region. The different types of biological disturbance structuring three encrusting communities were investigated on the east coast of Northland, New Zealand. The operation of each type was determined and the rate of disturbance measured. Experimental exclusion treatments were set up to demonstrate the effects of the major disturbance agents on community structure. The urchin Evechinus chloroticus was the most abundant agent of biological disturbance and affected the widest spectrum of encrusting organisms. The abundant balistid fish Navodon scaber was another major agent of biological disturbance in this region. Disturbance of algal populations also resulted from a guild of abundant herbivorous gastropods. Two episodes of fungal/bacterial infection degraded numbers of the large sponges Ancorina alata and Polymastia fusca. The operation of the different disturbance agents was found to be generally unpredictable in both time and space. There was no escape from biological disturbance for encrusting organisms in either small or large size. Re-occupation processes on patches of free primary space were investigated both experimentally and by using settlement plates (artificial free space patches). Recruitment was found to be irregular in space and time, especially for long-lived sessile organisms. Settlement processes as well as growth and mortality of newly settled organisms were investigated with a view to understanding community development. Only one verifiable example of substrate preparation or biological succession was found to operate in the communities studied. It is postulated that community organisation is flexible and not rigidly directed along a single successional pathway. Multiple developmental pathways and multiple stable configurations are possible in the same locality, resulting from the operation of different disturbance regimes.
85

The role of biological disturbance in determining the organisation of sub-tidal encrusting communities in temperate waters

Ayling, Tony, 1947- January 1976 (has links)
Biological disturbance was found to be one of the most important mechanisms control1ing community organisation in the temperate sub-tidal region. The different types of biological disturbance structuring three encrusting communities were investigated on the east coast of Northland, New Zealand. The operation of each type was determined and the rate of disturbance measured. Experimental exclusion treatments were set up to demonstrate the effects of the major disturbance agents on community structure. The urchin Evechinus chloroticus was the most abundant agent of biological disturbance and affected the widest spectrum of encrusting organisms. The abundant balistid fish Navodon scaber was another major agent of biological disturbance in this region. Disturbance of algal populations also resulted from a guild of abundant herbivorous gastropods. Two episodes of fungal/bacterial infection degraded numbers of the large sponges Ancorina alata and Polymastia fusca. The operation of the different disturbance agents was found to be generally unpredictable in both time and space. There was no escape from biological disturbance for encrusting organisms in either small or large size. Re-occupation processes on patches of free primary space were investigated both experimentally and by using settlement plates (artificial free space patches). Recruitment was found to be irregular in space and time, especially for long-lived sessile organisms. Settlement processes as well as growth and mortality of newly settled organisms were investigated with a view to understanding community development. Only one verifiable example of substrate preparation or biological succession was found to operate in the communities studied. It is postulated that community organisation is flexible and not rigidly directed along a single successional pathway. Multiple developmental pathways and multiple stable configurations are possible in the same locality, resulting from the operation of different disturbance regimes.
86

Cytogenetic studies in Drosophila birchii.

Baimai, Visut. Unknown Date (has links)
No description available.
87

The role of biological disturbance in determining the organisation of sub-tidal encrusting communities in temperate waters

Ayling, Tony, 1947- January 1976 (has links)
Biological disturbance was found to be one of the most important mechanisms control1ing community organisation in the temperate sub-tidal region. The different types of biological disturbance structuring three encrusting communities were investigated on the east coast of Northland, New Zealand. The operation of each type was determined and the rate of disturbance measured. Experimental exclusion treatments were set up to demonstrate the effects of the major disturbance agents on community structure. The urchin Evechinus chloroticus was the most abundant agent of biological disturbance and affected the widest spectrum of encrusting organisms. The abundant balistid fish Navodon scaber was another major agent of biological disturbance in this region. Disturbance of algal populations also resulted from a guild of abundant herbivorous gastropods. Two episodes of fungal/bacterial infection degraded numbers of the large sponges Ancorina alata and Polymastia fusca. The operation of the different disturbance agents was found to be generally unpredictable in both time and space. There was no escape from biological disturbance for encrusting organisms in either small or large size. Re-occupation processes on patches of free primary space were investigated both experimentally and by using settlement plates (artificial free space patches). Recruitment was found to be irregular in space and time, especially for long-lived sessile organisms. Settlement processes as well as growth and mortality of newly settled organisms were investigated with a view to understanding community development. Only one verifiable example of substrate preparation or biological succession was found to operate in the communities studied. It is postulated that community organisation is flexible and not rigidly directed along a single successional pathway. Multiple developmental pathways and multiple stable configurations are possible in the same locality, resulting from the operation of different disturbance regimes.
88

Benthic-invertebrate diversity of Tucetona laticostata (Mollusca: Bivalvia) biogenic substrata in Hauraki Gulf

Dewas, Severine Emmanuelle Alexandra January 2008 (has links)
Marine ecosystems are increasingly being subject to human impact from diverse recreational and commercial activities, not necessarily restricted to those of a marine nature. This has significant implications for biodiversity. The large dog cockle, Tucetona laticostata, once occurred live in Rangitoto Channel, Hauraki Gulf, although this species no longer appears to occur there, most likely as a consequence of repeated dredging and channel excavation and continued siltation. Tucetona laticostata still occurs in a few isolated pockets of sea bed throughout Hauraki Gulf, particularly off Otata Island, part of the Noises complex of islands, where it resides partially buried in shell and rock gravels in shallow water (to 15 metres depth). The shells of T. laticostata collect in large post-mortem deposits in an area ramping from the sea bed off southwestern Otata Island. These mounds differ significantly in structural complexity from those of adjacent, extensively fragmented shell and rock gravels. Using the mounds of T. laticostata shell as a proxy for structural complexity, in order to appraise the effect of complexity on benthic-invertebrate diversity, the sea bed off southwestern Otata Island was sampled quarterly at two depths and in both T. laticostata shell mounds and adjacent extensively fragmented shell and rock gravels. These data were complemented with those from additional surveys around Otata Island, and off eastern Motutapu Island to determine the distribution and composition of benthic-invertebrate community assemblages throughout the region, and from concurrent surveys throughout the Waitemata Harbour and inner Hauraki Gulf to determine the current distribution of T. laticostata in this region. The number of benthic invertebrate species and individuals within T. laticostata habitat almost always was higher than that occurring within extensively fragmented shell- and rock gravel habitat, with densities to 142,385 individuals m-2 encountered. Temporal and spatial variations in benthic community structure also are reported for the two habitats, T. laticostata-based shells and extensively fragmented shell- and rock gravels. The numbers of species were higher amongst samples collected off the southwestern and eastern sides of Otata Island than elsewhere around this island, or of eastern Motutapu Island. Of the 351 species reported from all Otata and Motutapu Island samples combined, 73% of them occurred off southwestern Otata Island, 30% of which were found exclusively within T. laticostata shell habitat, and 10.5% within extensively fragmented shell and rock gravel habitat. The sea bed off southwestern Otata Island is regularly, seasonally dredged by recreational scallop fishers, in addition to being a popular small-vessel anchorage site. Both of these activities, dredging and anchorage, stand to reduce substratum complexity by fragmentation and dispersal of the valves of T. laticostata. Given the unique benthic invertebrates reported from T. laticostata shell deposits reported from southwestern Otata Island, any activity that damages the shells of this species, regardless of whether they are live or dead, is likely to result in loss of biodiversity. Admittedly, many of species identified as major contributors to differences in benthic invertebrate assemblages between T. laticostata shell-based habitats and those of extensively fragmented shell and rock gravels are not particularly charismatic or large, but each likely plays a role in local food webs and/or sediment and water column chemistry. It was not the intention of this research to determine the effects of anthropogenic disturbances like dredging or vessel anchorage on benthic-invertebrate communities off southwestern Otata Island. However, given the reported differences in species diversity within the structurally complex substratum provided by T. laticostata, conservation of biogenic reef-forming species like it might be a prudent, precautionary measure to take.
89

The role of biological disturbance in determining the organisation of sub-tidal encrusting communities in temperate waters

Ayling, Tony, 1947- January 1976 (has links)
Biological disturbance was found to be one of the most important mechanisms control1ing community organisation in the temperate sub-tidal region. The different types of biological disturbance structuring three encrusting communities were investigated on the east coast of Northland, New Zealand. The operation of each type was determined and the rate of disturbance measured. Experimental exclusion treatments were set up to demonstrate the effects of the major disturbance agents on community structure. The urchin Evechinus chloroticus was the most abundant agent of biological disturbance and affected the widest spectrum of encrusting organisms. The abundant balistid fish Navodon scaber was another major agent of biological disturbance in this region. Disturbance of algal populations also resulted from a guild of abundant herbivorous gastropods. Two episodes of fungal/bacterial infection degraded numbers of the large sponges Ancorina alata and Polymastia fusca. The operation of the different disturbance agents was found to be generally unpredictable in both time and space. There was no escape from biological disturbance for encrusting organisms in either small or large size. Re-occupation processes on patches of free primary space were investigated both experimentally and by using settlement plates (artificial free space patches). Recruitment was found to be irregular in space and time, especially for long-lived sessile organisms. Settlement processes as well as growth and mortality of newly settled organisms were investigated with a view to understanding community development. Only one verifiable example of substrate preparation or biological succession was found to operate in the communities studied. It is postulated that community organisation is flexible and not rigidly directed along a single successional pathway. Multiple developmental pathways and multiple stable configurations are possible in the same locality, resulting from the operation of different disturbance regimes.
90

Relationships between benthic macroinvertebrate assemblages and habitat types in nearshore marine and estuarine waters along the lower west coast of Australia /

Wildsmith, Michelle Deanne. January 2007 (has links)
Thesis (Ph.D.)--Murdoch University, 2007. / Thesis submitted to the Faculty of Sustainability, Environmental and Life Sciences. Includes bibliographical references (leaves 249-274)

Page generated in 0.0796 seconds