• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE EFFECTS OF RIVER SEDIMENT, ENDOSULFAN, AND MODERATE HYPOXIA ON BLUE CRABS (CALLINECTES SAPIDUS) FROM THE TIDAL, FRESHWATER JAMES RIVER

Williams, Laura 30 November 2012 (has links)
Juvenile male blue crabs move into the tidal, freshwater James River during warmer months to feed and grow by undergoing molting. In crustaceans, growth and molting are hormonally controlled. The physiological effects of a multiple-stressor environment are determined by comparing the blue crab’s oxygen uptake after exposure to pure sand, James River sediment, or endosulfan-spiked sand. The effect of multiple stressors on molting is measured by the activity level of N-acetyl-ß-glucosaminidase (NAG), an enzyme in epidermal tissue important to molting. The oxygen uptake was decreased by exposure to James River sediment but not for exposure to endosulfan for seven days. Exposure to James River sediments over two days caused a similar suppression of epidermal NAG activity as exposure to endosulfan. These results indicate that the blue crab’s exposure to James River sediments and moderate hypoxia has the potential to cause short-term effects on physiology and long-term effects on growth.
2

Nuclear translocation in the Drosophila eye disc : an inside look at the role of misshapen and the endocytic-recycling traffic pathway

Houalla, Tarek. January 2007 (has links)
The main focus of my PhD studies was aimed at understanding the general mechanism of nuclear translocation and isolating novel components of the nuclear translocation pathway in neurons. Using the Drosophila visual system as an in vivo model to study nuclear motility in developing photoreceptor cells (R-cells), I have identified a novel role for the Ser/Thr kinase Misshapen (Msn) and the endocytic trafficking pathway in regulating the nuclear translocation process. / The development of R-cells in the Drosophila eye disc is an excellent model system for the study of nuclear motility owing to its monolayer organization and the stereotypical translocation of its differentiating R-cell nuclei along the apical-basal plane. Prior to my thesis work, several laboratories had identified dynein and its associating proteins in R-cell nuclear translocation, however nothing was known about the signalling pathway that controlled their function in nuclear migration. Thus, one of my thesis goals was to elucidate the signalling mechanism controlling nuclear translocation in R-cells. / Using a combination of molecular and genetic approaches, I identified Msn as a key component of a novel signalling pathway regulating R-cell nuclear translocation. Loss of msn causes a failure of R-cell nuclei to migrate apically. Msn appears to control R-cell nuclear translocation by regulating the localization of dynein and Bicaudal-D (Bic-D). My results also show that Msn enhances Bic-D phosphorylation in cultured cells, suggesting that Msn regulates R-cell nuclear migration by modulating the phosphorylation state of Bic-D. Consistently, my results show that a Bic-D-phosphorylation-defective mutation disrupted the apical localization of both Bic-D and dynein. I propose a model in which Msn induces the phosphorylation of Bic-D, which in turn modulates the activity and/or subcellular localization of dynein leading to the apical migration of R-cell nuclei. / In addition to studying Msn, I have also searched for additional players in R-cell nuclear migration. From a gain-of-function approach, I found that the misexpression of the GTPase-activating-protein (GAP) RN-Tre caused a severe defect in R-cell nuclear migration. Since mammalian RN-Tre is involved in negatively regulating Rab protein activity, I speculated that the RN-Tre misexpression phenotype reflected a role for Rab-mediated vesicular transport in regulating R-cell nuclear migration. I systematically examined the potential role of Rab family proteins in R-cell nuclear migration and found that interfering with the function of Rab5, Rab11 or Shibire caused a similar nuclear migration phenotype. I propose that an endocytic pathway involving these GTPases is required for the targeting of determinants to specific subcellular locations, which in turn drive the apical migration of R-cell nuclei during development.
3

Nuclear translocation in the Drosophila eye disc : an inside look at the role of misshapen and the endocytic-recycling traffic pathway

Houalla, Tarek. January 2007 (has links)
No description available.

Page generated in 0.1011 seconds